В каких единицах выражается мощность тока: В каких единицах выражается мощность тока

Содержание

В каких единицах выражается мощность. Механическая мощность формула и определение. Мощность — физическая величина, формула мощности. Емкостные и индуктивные нагрузки

то есть произведение векторов силы на скорость движения — и есть мощность. В чем измеряется она? По международной системе СИ, единицей измерения данной величины является 1 Ватт.

Ватт и другие единицы измерения мощности

Ватт означает мощность, где за одну секунду производится работа в один джоуль. Последнюю единицу назвали так в честь англичанина Дж.Уатта, который изобрел и соорудил первую паровую машину. Но он при этом использовал другую величину — лошадиную силу, каковая применяется и по сей день. Одна лошадиная сила приблизительно равна 735,5 Ватт.

Таким образом, кроме Ватта, мощность измеряют в метрической лошадиной силе. А при очень малом значении также используют Эрг, равный десяти в минус седьмой степени Ватт. Возможно и измерение в одной единице массы/силы/метров в секунду, что равно 9,81 Ватт.

Мощность в двигателе

Названная величина является одной из самых важных в любом моторе, который бывает самой разной мощности. Например, электрическая бритва имеет сотые доли киловатта, а ракета космического корабля насчитывает миллионы.

Для разной нагрузки необходима различная мощность для сохранения определенной скорости. Например, машина станет тяжелее, если в нее поместить больше груза. Тогда сила трения о дорогу увеличится. Поэтому, чтобы поддерживать ту же скорость, что и в ненагруженном состоянии, потребуется большая мощность. Соответственно, мотор будет съедать больше топлива. Об этом факте известно всем водителям.

Но при большой скорости важна и инерция машины, которая прямо пропорциональна ее массе. Бывалые водители, знающие об этом факте, находят при езде лучшее сочетание топлива и скорости, чтобы бензина уходило меньше.

Мощность тока

В чем измеряется мощность тока? В той же самой единице по системе СИ. Она может быть измерена прямым или косвенным методом.

Первый способ реализуется при помощи ваттметра, потребляющего существенную энергию и сильно нагружающего источник тока. С его помощью измеряется от десяти Ватт и более. Косвенный метод используют при необходимости измерить малые значения. Приборами для этого служат амперметр и вольтметр, подсоединенные к потребителю. Формула в данном случае будет иметь такой вид:

При известном сопротивлении нагрузки, измеряем протекающую через нее величину тока и находим мощность так:

P = I 2 ∙ R н.

По формуле P = I 2 /R н также может быть вычеслена мощность тока.

В чем измеряется она в сети трехфазного тока, тоже не секрет. Для этого применяют уже знакомый прибор — ваттметр. Причем решить задачу, чем измеряется электрическая мощность, можно с помощью одного, двух или даже трех приборов. Например, для четырехпроводной установки потребуется три устройства. А для трехпроводной при несимметричной нагрузке — два.

Ещё в 18 веке мощность стали считать в лошадиных силах. До сих пор эта физическая величина употребляется для обозначения силы двигателей. Рядом с показателем мощности двигателя внутреннего сгорания в ваттах продолжают писать значение в л.с.

Мощность как физическая величина, формула мощности

Значение, показывающее, как быстро происходят преобразование, трансляция или потребление энергии в какой-либо системе, – мощность. Для характеристик энергетических условий важно, насколько быстро выполняется процесс. Работа, реализуемая в единицу времени, именуется мощностью:

  • А – работа;
  • t – время.

Можно учитывать отдельно мощность в механике и электрическую мощность.

Чтобы получить ответ на вопрос: в чем измеряется механическая мощность, рассматривают действие силы на движущееся тело. Сила проделывает работу, мощность в таком случае определяется по формуле:

  • F – сила;
  • v – скорость.

При вращательном движении эту величину определяют с учётом момента силы и частоты вращения, «об. /мин.».

Зависимость между электрическим током и мощностью

В электротехнике работой будет U – напряжение, которое перемещает 1 кулон, количество перемещаемых в единицу времени кулонов – это ток (I). Мощность электротока или электрическую мощность P получают, умножив ток на напряжение:

Это полная работа, выполненная за 1 секунду. Зависимость здесь прямая. Изменяя ток или напряжение, изменяют мощность, расходуемую устройством.

Одинакового значения Р добиваются, варьируя одну из двух величин.

Определение единицы измерения мощности тока

Единица измерения мощности тока носит имя Джеймса Ватта, шотландского инженера-механика. 1 Вт – это мощность, которую вырабатывает ток 1 А при разности потенциалов 1 В.

К примеру, источник при напряжении 3,5 В создаёт в цепи ток 0,2 А, тогда мощность тока получится:

P = U*I = 3,5*0,2 = 0,7 Вт.

Внимание! В механике мощность принято изображать буквой N, в электротехнике – буквой P. В чем измеряется n и P? Независимо от обозначения, это одна величина, и измеряется она в ваттах «Вт».

Ватт и другие единицы измерения мощности

Говоря о том, в чем измеряется мощность, необходимо знать, о чём идёт речь. Ватт – это величина, соответствующая 1 Дж/с. Она принята в Международной Системе Единиц. В каких единицах ещё измеряется мощность? Раздел науки астрофизика работает с единицей под названием эрг/с. Эрг – очень маленькая величина, равная 10-7 Вт.

Ещё одна, поныне распространённая, единица из этого ряда – «лошадиная сила». В 1789 году Джеймс Ватт подсчитал, что груз весом 75 кг из шахты может вытащить одна лошадь и сделать это со скоростью 1 м/с. Исходя из подсчёта такой трудоёмкости, мощность двигателей допускается измерить этой величиной в соотношении:

1 л.с. = 0,74 кВт.

Интересно. Американцы и англичане считают, что 1 л.с. = 745.7 Вт, а русские – 735.5 Вт. Спорить, кто прав, а кто нет, не имеет смысла, так как мера эта внесистемная и не должна быть использована. Международная организация законодательной метрологии рекомендует изъять её из обращения.

В России при расчёте полиса КАСКО или ОСАГО используют эти данные силового агрегата автомобиля.

Формула взаимосвязи между мощностью, напряжением и силой тока

В электротехнике работу рассматривают как некоторое количество энергии, отдаваемое источником питания на действие электроприбора в период времени. Поэтому электрическая мощность есть величина, описывающая быстроту трансформации или передачи электроэнергии. Её формула для постоянного тока выглядит так:

  • U – напряжение, В;
  • I – сила тока, А.

Для некоторых случаев, пользуясь формулой закона Ома, мощность можно вычислить, подставив значение сопротивления:

P = I*2*R, где:

  • I – сила тока, А;
  • R – сопротивление, Ом.

В случае расчётов мощности цепей переменного тока придётся столкнуться с тремя видами:

  • активная её формула: P = U*I*cos ϕ, где – коэффициент угла сдвига фаз;
  • реактивная рассчитывается: Q = U*I*sin ϕ ;
  • полная представлена в виде: S = √P2 + Q2, гдe P – aктивная, а Q2 – реактивная.

Расчёты для однофазной и трёхфазной цепей переменного тока выполняются по разным формулам.

Важно! Потребители электроэнергии на предприятиях в большинстве асинхронные двигатели, трансформаторы и другие индуктивные приёмники. При работе они используют реактивную мощность, а та, протекая по линиям электропередач, приводит ЛЭП к дополнительной нагрузке. Чтобы повысить качество энергии, используют компенсацию реактивной энергии в виде конденсаторных установок.

Приборы для измерения электрической мощности

Провести измерения мощности позволяет ваттметр. У него две обмотки. Одна включается в цепь последовательно, как амперметр, вторая параллельно, как вольтметр. В установках электроэнергетики ваттметры определяют значения в киловатт-час «кВт*час». В измерениях нуждается не только электрическая, а также лазерная энергия. Приборы, способные измерять этот показатель, изготавливаются как стационарного, так и переносного исполнения. С их помощью оценивают уровень лазерных излучений оборудования, применяющего этот вид энергии. Один из портативных измерителей – LP1, японского производителя. LP1 разрешает напрямую определять значения силы светового излучения, к примеру, в визуальном пятне оптических устройств проигрывателей DVD.

Мощность в бытовых электрических приборах

Для нагрева металла нити накаливания лампочки, увеличения температуры рабочей поверхности утюга или иного бытового прибора, тратится определённое количество электроэнергии. Её величину, отбираемую нагрузкой за час, считают потребляемой мощностью этого аппарата.

Внимание! Если на лампочке написано «40 W, 230 V», это значит, что за 1 час она потребляет из сети переменного тока 40 Вт. Зная количество лампочек и параметры, подсчитывают, сколько энергии тратится на освещение комнат в месяц.

Как перевести ватты

Так как ватт величина маленькая, в быту оперируют киловаттами, пользуются системой перевода величин:

  • 1 Вт = 0,001 кВт;
  • 10 Вт = 0,01 кВт;
  • 100 Вт = 0,1 кВт;
  • 1000 Вт = 1 кВт.

Мощность некоторых электрических приборов, Вт

Средние значения потребления электроэнергии бытовых устройств:

  • плиты – 110006000 Вт;
  • холодильники – 150-600 Вт;
  • стиральные машины – 1000-3000 Вт;
  • пылесосы – 1300-4000 Вт;
  • электрочайники – 2000-3000 Вт.

Параметры каждого бытового прибора указываются в паспорте, а также обозначаются на корпусе. Там определены точные значения для информации потребителя.

Видео

Выполняемой за некоторый промежуток времени, к этому промежутку времени.

Эффективная мощность , мощность двигателя, отдаваемая рабочей машине непосредственно или через силовую передачу. Различают полезную, полную и номинальную Э. м. двигателя. Полезной называют Э. м. двигателя за вычетом затрат мощности на приведение в действие вспомогательных агрегатов или механизмов, необходимых для его работы, но имеющих отдельный привод (не от двигателя непосредственно). Полная Э.

м. — мощность двигателя без вычета указанных затрат. Номинальная Э. м., или просто номинальная мощность, — Э. м., гарантированная заводом-изготовителем для определённых условий работы. В зависимости от типа и назначения двигателя устанавливаются Э. м., регламентируемые стандартами или техническими условиями (например, наибольшая мощность судового реверсивного двигателя при определённой частоте вращения коленчатого вала в случае заднего хода судна — так называемая мощность заднего хода, наибольшая мощность авиационного двигателя при минимальном удельном расходе топлива — так называемая крейсерская мощность и т. п.). Э. м. зависит от форсирования (интенсификации) рабочего процесса, размеров и механического кпд двигателя.

Единицы измерения

Другой распространённой единицей измерения мощности является лошадиная сила .

Соотношения между единицами мощности
Единицы Вт кВт МВт кгс·м/с эрг/с л. с.
1 ватт 1 10 -3 10 -6 0,102 10 7 1,36·10 -3
1 киловатт 10 3 1 10 -3 102 10 10 1,36
1 мегаватт 10 6 10 3 1 102·10 3 10 13 1,36·10 3
1 килограмм-сила-метр в секунду 9,81 9,81·10 -3 9,81·10 -6 1 9,81·10 7 1,33·10 -2
1 эрг в секунду 10 -7 10 -10 10 -13 1,02·10 -8 1 1,36·10 -10
1 лошадиная сила 735,5 735,5·10 -3 735,5·10 -6 75 7,355·10 9 1

Мощность в механике

Если на движущееся тело действует сила , то эта сила совершает работу. Мощность в этом случае равна скалярному произведению вектора силы на вектор скорости, с которой движется тело:

M — момент, — угловая скорость, — число пи , n — частота вращения (об/мин).

Электрическая мощность

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

S — Полная мощность, ВА

P — Активная мощность, Вт

Q — Реактивная мощность, ВАр

Приборы для измерения мощности

Примечания

См. также

Ссылки

  • Влияние формы электрического тока на его действие. Журнал «Радио», номер 6, 1999 г.

Wikimedia Foundation . 2010 .

Смотреть что такое «Мощность (физика)» в других словарях:

    Наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, св ва и строение материи и законы её движения. Понятия Ф. и её законы лежат в основе всего естествознания. Ф. относится к точным наукам и изучает количеств … Физическая энциклопедия

    Примеры разнообразных физических явлений Физика (от др. греч. φύσις … Википедия

    I. Предмет и структура физики Ф. – наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства и строение материи и законы её движения. Поэтому понятия Ф. и сё законы лежат в основе всего… … Большая советская энциклопедия

    Физика высоких плотностей энергий (англ. High Energy Density Physics, HED Physics) раздел физики на стыке физики конденсированного состояния и физики плазмы, занимающийся изучением систем, имеющих высокую плотность энергии. Под высокой … Википедия

    Электрическая мощность физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Содержание 1 Мгновенная электрическая мощность … Википедия

    Электрическая мощность физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Содержание 1 Мгновенная электрическая мощность 2 Мощность постоянного тока … Википедия

    У этого термина существуют и другие значения, см. Интенсивность. Интенсивность Размерность MT−3 Единицы измерения СИ Вт/м² … Википедия

    Ваттметр (ватт + гр. μετρεω измеряю) измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала. Содержание 1 Классификация 2 Ваттметры низкой частоты и постоянного тока … Википедия

Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.

Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.

Мощность — физическая величина, отражающая скорость преобразования или передачи электрической энергии.

В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.

Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д. ), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.

При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.

Понятие активной мощности

Активная “полезная” мощность — это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в (Вт ).

Рассчитывается по формуле: P = U⋅I⋅cosφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.

ВАЖНО! Описанная ранее формула подходит для расчета цепей с , однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73

Понятие реактивной мощности

Реактивная “вредная” мощность — это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.

Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.

Обозначается эта величина латинской буквой Q.

ЗАПОМНИТЕ! Реактивная мощность измеряется не в привычных ваттах (Вт ), а в вольт-амперах реактивных (Вар ).

Рассчитывается по формуле:

Q = U⋅I⋅sinφ ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.

ВАЖНО! При расчете данная величина может быть как положительной, так и отрицательной – в зависимости от движения фазы.

Емкостные и индуктивные нагрузки

Главным отличием реактивной (емкостной и индуктивной ) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.

Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле (в течение половины полупериода ), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.

ВАЖНО! При работе индуктивной нагрузки кривая тока всегда отстает от кривой напряжения на половину полупериода.

Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.

ВАЖНО! Во время работы емкостной нагрузки кривая тока опережает кривую напряжения на половину полупериода.

Коэффициент мощности cosφ

Коэффициент мощности cosφ (читается косинус фи )– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.

Коэффициент cosφ находится через отношение активной электрической мощности к полной электрической мощности.

ОБРАТИТЕ ВНИМАНИЕ! При более точном расчете следует учитывать нелинейные искажения синусоиды, однако, в обычных расчетах ими пренебрегают.

Значение данного коэффициента может изменяться от 0 до 1 (если расчет ведется в процентах, то от 0% до 100% ). Из расчетной формулы не сложно понять, что, чем больше его значение, тем больше активная составляющая, а значит лучше показатели прибора.

Понятие полной мощности. Треугольник мощностей

Полная мощность – это геометрически вычисляемая величина, равная корню из суммы квадратов активной и реактивной мощностей соответственно. Обозначается латинской буквой S.

S = U⋅I

ВАЖНО! Полная мощность измеряется в вольт-амперах (ВА ).

Треугольник мощностей – это удобное представление всех ранее описанных вычислений и соотношений между активной, реактивной и полной мощностей.

Катеты отражают реактивную и активную составляющие, гипотенуза – полную мощность. Согласно законам геометрии, косинус угла φ равен отношению активной и полной составляющих, то есть он является коэффициентом мощности.


Как найти активную, реактивную и полную мощности. Пример расчета

Все расчеты строятся на указанных ранее формулах и треугольнике мощностей. Давайте рассмотрим задачу, наиболее часто встречающуюся на практике.

Обычно на электроприборах указана активная мощность и значение коэффициента cosφ. Имея эти данные несложно рассчитать реактивную и полную составляющие.

Для этого разделим активную мощность на коэффициент cosφ и получим произведение тока и напряжения. Это и будет полной мощностью.

Как измеряют cosφ на практике

Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром . Также с этой задачей легко справится цифровой ваттметр.

Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.

  1. Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
  2. Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.

Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.

Facebook

Twitter

Вконтакте

Google+

Программы

В каких единицах выражается реактивная мощность потребителей

Многие люди, которые изучают скалярные физические величины и такие сферы точных наук, как электродинамика, электростатика и магнитостатика, сталкиваются с понятием мощности. Каково определение активной и реактивной мощности, их источник и в чем основная разница — далее в статье.

Описание явлений

Мощностью называется скалярный вид физической величина, которая показывает, как передается или преобразуется электроэнергия. Бывает мощность постоянного и переменного тока. Что касается последнего, то делится на активную и реактивную.

Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.

Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов.

Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значениям.

Зачем нужна

Электричество передает энергию в проводник для осуществления технического процесса. Чтобы процесс происходил, переданная сила должна преобразовываться в тепло и напряжение. При этом электроэнергия должна поступать постоянно, что обеспечивается обеими разновидностями мощностной характеристики. Активно действующая дает полезную силу, а реактивно действующая ее поддерживает в электродвигательных, трансформаторных, печных, сварочных, дроссельных и осветительных установках.

Источник реактивной энергии

Чтобы понять природу появления этой энергии и то, как найти реактивную мощность, нужно уточнить, что любая электромагнитная или индукционная машина, которая работает на переменном токе, преобразует электричество в тепло. Чтобы это преобразование произошло, нужно магнитное поле. Оно, соответственно, формируется безваттной энергией. Причина в поглощении энергии индукционной цепи и отдаче ее обратно при спаде магнитного поля два раза за цикл мощностной частоты.

Различия

Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.

Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания.

Расчет по формуле

Представить обе разновидности можно определением из формул вычисления. Так активно действующая мощностная характеристика это соотношение напряжения с силой тока на косинус угла сдвига фаз между ними. Там, где несинусоидальный ток, она равна суммированию средних мощностных характеристик. Может быть выражена через другую формулу. Она может быть равна удвоенной силе тока на сопротивление цепи или удвоенному напряжению на проводимость. Также может быть найдена с помощью полной энергии, перемноженной на косинус угла сдвига фаз напряжения с электротоком.

Возвращаясь к вопросу, в каких единицах выражается реактивная мощность потребителей, можно отметить, что она находится по двум формулам, основной из которых является умножение напряжения на силу тока и синус сдвига фаз. Также может быть найдена через квадрат вычисления удвоенной полной энергии потребления. Измерение полной происходит из умножения напряжения на токовую силу.

Обратите внимание! Обе разновидности находятся в ваттах. Один ватт равен килограмму, умноженному на соотношение квадратного метра на кубические секунды. Также он равен джоулю, поделенному на секунды, ньютону на метр/секунду, вольту на ампер.

Отыскать одну и другую силу можно не только по формулам, но и по технологически современным устройствам, таким как вольтметр, амперметр или фазометр. Для вычисления любых показателей можно воспользоваться также мультиметром.

Мощность — то, что характеризует скорость передачи с преобразованием электроэнергии. Реактивная мощность в цепи переменного тока от активной отличается тем, что используется для передачи реальной силы источника, в то время как вторая является самой реальной электроэнергией. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне. Активно применяются в промышленности.

Пусть приемник электро­энергии присоединен к источнику синусоидального напряжения u(t) = Usin(ωt) и потребляет синусоидальный ток i(t) = I sin (ωt -φ), сдви­нутый по фазе относительно напряжения на угол φ. U и I – действующие значения. Значение мгновенной мощности на зажимах приемника определяется выражением

p(t) = u(t) ?i(t) = 2UI sin(ωt) sin (ωt -φ) = UI cos φ — UI cos (2ωt -φ) (5.1)

и является суммой двух величин, одна из которых постоянна во времени, а другая пульсирует с двойной частотой.

Среднее значение p(t) за период Т называется активной мощностью и полностью определяется первым слагаемым уравнения (5.1):

Активная мощность ха­рактеризует энергию, расходуемую необратимо источником в единицу времени на производство полезной работы потребителем. Активная энергия, потребляемая электроприёмниками, преобразуется в другие виды энергии: механическую, тепловую, энергию сжатого воздуха и газа и т. п.

Среднее значение от второго слагаемого мгновенной мощности (1.1) (пульсирует с двойной частотой) за время Т равно нулю, т. е. на ее создание не требуется каких-либо материальных затрат и поэтому она не может совершать полезной ра­боты. Однако ее присутствие указывает, что между источником и приемником происходит обратимый процесс обмена энергией. Это возможно, если имеются элементы, способные накапливать и отдавать электромагнитную энергию – емкость и индуктивность. Эта составляющая характеризует реактивную мощность.

Полную мощность на зажимах приемника в комп­лексной форме можно представить следующим образом:

. (5.2)

Единица измерения полной мощности S = UI – ВА.

Реактивная мощность – величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями (обменом) энергии между источником и приемником. Для синусоидального тока она равна произведению действующих значений тока I и напряжения U на синус угла сдвига фаз между ними: Q = UI sinφ. Единица измерения – ВАр.

Реактивная мощность не связана с полезной работой ЭП и расходуется только на создание переменных электромагнитных полей в электродвигателях, трансформаторах, аппаратах, линиях и т. д.

Для реактивной мощности приняты такие понятия, как генерация, потребление, передача, потери, баланс. Считается, что если ток отстает по фазе от напряжения (индуктивный характер нагрузки), то реактивная мощ­ность потребляется и имеет положительный знак, а если ток опережает напряжение (емкостный характер нагрузки), то реактивная мощность ге­нерируется и имеет отрицательное значение.

Основными потребителями реактивной мощности на промышленных предприятиях являются асинхронные двигатели (60–65 % общего потреб­ления), трансформаторы (20–25 %), вентильные преобразователи, реакторы, воздушные электрические сети и прочие приемники (10 %).

Передача реактивной мощности загружает электрические сети и установленное в ней оборудование, уменьшая их пропускную способность. Реактивная мощность генерируется синхронными генераторами электростанций, синхронными компенса­торами, синхронными двигателями (регулирование током возбуждения), батареями конденсаторов (БК) и линиями электропередачи.

Реактивная мощность, вырабатываемая емкостью сетей, имеет следующий порядок величин: воздушная линия 20 кВ генерирует 1 кВАр на 1 км трехфазной линии; подземный кабель 20 кВ – 20 кВАр/км; воздушная линия 220 кВ – 150 кВАр/км; подземный кабель 220 кВ – 3 МВАр/км.

Коэффициент мощности и коэффициент реактивной мощности.

Векторное представление величин, характеризующих состояние сети, приводит к представлению реактивной мощности Q вектором, перпендикулярным вектору активной мощности Р (рис. 5.2 ). Их векторная сумма дает полную мощность S.

Рис. 5.1. Треугольник мощностей

Согласно рис. 5.1 и (5.2) следует, что S 2 = Р 2 + Q 2 ; tgφ = Q/P; cosφ = P/S.

Основным нормативным показателем, характе­ризующим реактивную мощность, ранее был коэффициент мощности cosφ. На вводах, питающих промышленное предприятие, средневзвешенное значение этого коэффициента должно было находиться в пределах 0,92–0,95. Однако выбор соотношения P/S в качестве нормативного не дает четкого представления о динамике изменения реального значения реактивной мощности. Например, при изменении коэффициента мощности от 0,95 до 0,94 реактивная мощность изменяется на 10 %, а при изменении этого же коэффициента от 0,99 до 0,98 приращение реактивной мощности составляет уже 42 %. При расчетах удобнее оперировать соотношением tgφ = Q/P, которое называют коэффициентом реактивной мощности.

Предприятиям, у которых присоединенная мощность более 150 кВт (за исключением «бытовых» потребителей), определены предельные значения коэффициента реактивной мощности, потребляемой в часы больших суточных нагрузок электрической сети – с 7 до 23 часов (Приказ Министерства промышленности и энергетики РФ от 22.02.2007 г. № 49 «О порядке расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии»).

Предельные значения коэффициентов реактивной мощности (tgφ) нормируются в зависимости от положения точки (напряжения) присоединения потребителя к сети. Для напряжения сети 100 кВ tgφ = 0,5; для сетей 35, 20, 6 кВ – tgφ = 0,4 и для сети 0,4 кВ – tgφ = 0,35.

Введение новых директивных документов по компен­сации реактивной мощности было направлено на повышение эффективности работы всей системы электроснабжения от генераторов энергосистемы до приемников электроэнергии.

С введением коэффициента реактивной мощности стало возможным представлять потери активной мощности через активную или реактивную мощности: Р = (P 2 /U 2 ) R (l + tg 2 φ).

Угол между векторами мощностей Р и S соответствует углу φ между векторами активной составляющей тока Iа и полного тока I, который, в свою очередь, представляет собой векторную сумму активного тока Iа, находящегося в фазе с напряжением, и реактивного тока Iр, находящегося под углом 90° к нему. Это расположение токов является расчетным приемом, связанным с разложением на активную и реактивную мощности, которое можно считать естественным.

Большинство потребителей нуждаются в реактивной мощности, поскольку они функционируют благодаря изменению магнитного поля. Для наиболее употребительных двигателей в нормальном режиме работы можно привести следующие примерные значения tgφ.

Электродвигатели tgφ cosφ
Однофазный асинхронный двигатель 1,30–0,90 0,61–0,74
Трехфазный асинхронный двигатель 1,00–0,50 0,70–0,89
Коллекторный двигатель 1,30–1,00 0,61–0,70

В момент пуска двигателей требуется значительное количество реактивной мощности, при этом tgφ = 4–5 (cosφ = 0,2–0,24).

Синхронные машины обладают способностью потреблять или выдавать реактивную мощность в зависимости от степени возбуждения.

В синхронных генераторах и двигателях размеры цепей возбуждения ограничивают возможность поставки реактивной мощности до максимальных значений tgφ = 0,75 (cosφ = 0,8) или до tgφ = 0,5 (cosφ = 0,9) (табл. 5.1).

Синхронные двигатели, выпускаемые отечественной промышленностью, рассчитаны на опережающий коэффициент мощности (cosφ = 0,9) и при номинальной активной нагрузке Pном и напряжении Uном могут вырабатывать номинальную реактивную мощность Qном ≈ 0,5Pном.

При недогрузке СД по активной мощности β = P/Pном 1.

Преимуществом СД, используемым для компенсации реактивной мощности, по сравнению с КБ является возможность плавного регулирования генерируемой реактивной мощности. Недостатком является то, что активные потери на генерирование реактивной мощности для СД больше, чем для КБ.

Дополнительные активные потери в обмотке СД, вызываемые генерируемой реактивной мощностью в пределах изменения cosφ от 1 до 0,9 при номинальной активной мощности СД, равной Pном, кВт:

где Qном – номинальная реактивная мощность СД, кВ Ар; R – сопротивление одной фазы обмотки СД в нагретом состоянии, Ом; Uном – номинальное напряжение сети, кВ.

В системах электроснабжения промышленных предприятий КБ компенсируют реактивную мощность базисной (основной) части графиков нагрузок, а СД снижают пики нагрузок графика.

Таблица 5.1

Зависимости коэффициента перегрузки по реактивной мощности синхронных двигателей

Серия, номинальное напряжение, частота вращения двига теля Относительное напряжение на зажимах двигателя U/Uном Коэффициент перегрузки по реактивной мощности α при коэффициенте загрузки β
0,90 0,80 0,70
СДН, 6 и 10 кВ (для всех частот вращения) СДН, 6 кВ: 600–1000 об/мин 370–500 об/мин 187–300 об/мин 100–167 об/мин СДН, 10 кВ: 1000 об/мин 250–750 об/мин СТД, 6 и 10 кВ, 3000 об/мин СД и СДЗ, 380 В (для всех частот вращения) 0,95 1,00 1,05 1,10 1,10 1,10 1,10 1,10 1,10 0,95 1,00 1,05 1,10 0,95 1,00 1,05 1,10 1,31 1,21 1,06 0,89 0,88 0,86 0,81 0,90 0,86 1,30 1,32 1,12 0,90 1,16 1,15 1,10 0,90 1,39 1,27 1,12 0,94 0,92 0,88 0,85 0,98 0,90 1,42 1,34 1,23 1,08 1,26 1,24 1,18 1,06 1,45 1,33 1,17 0,96 0,94 0,90 0,87 1,00 0,92 1,52 1,43 1,31 1,16 1,36 1,32 1,25 1,15

Синхронные компенсаторы.

Разновидностью СД являются синхронные компенсаторы (СК), которые представляют собой СД без нагрузки на валу. В настоящее время выпускается СК мощностью выше 5000 кВ?Ар. Они имеют ограниченное применение в сетях промышленных предприятий. Для улучшения показателей качества напряжения у мощных ЭП с резкопеременной, ударной нагрузкой (дуговые печи, прокатные станы и т. п.) используются СК.

Статические тиристорные компенсирующие устройства.

В сетях с резкопеременной ударной нагрузкой на напряжении 6–10 кВ рекомендуется применение не конденсаторных батарей, а специальных быстродействующих источников реактивной мощности (ИРМ), которые должны устанавливаться вблизи таких ЭП. Схема ИРМ приведена на рис. 5.2. В ней в качестве регулируемой индуктивности используются индуктивности LR и нерегулируемые ёмкости С1–С3.

Рис. 5.2. Быстродействующие источники реактивной мощности

Регулирование индуктивности осуществляется тиристорными группами VS, управляющие электроды которых подсоединены к схеме управления. Достоинствами статических ИРМ являются отсутствие вращающихся частей, относительная плавность регулирования реактивной мощности, выдаваемой в сеть, возможность трёх- и четырёхкратной перегрузки по реактивной мощности. К недостаткам относится появление высших гармоник, которые могут возникнуть при глубоком регулировании реактивной мощности.

За счет дополнительных потерь мощности в сети, вызванных потреблением реактивной мощности, увеличивается общее потребление электроэнергии. Поэтому снижение перетоков реактивной мощности является одной из основных задач эксплуатации электрических сетей.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9838 — | 7698 — или читать все.

Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.

Мощность в цепи переменного электрического тока

Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.

Мощность – физическая величина, отражающая скорость преобразования или передачи электрической энергии.

В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.

Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д.), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.

При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.

Понятие активной мощности

Активная “полезная” мощность – это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в ваттах (Вт).

Рассчитывается по формуле: P = U⋅I⋅cosφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.

ВАЖНО! Описанная ранее формула подходит для расчета цепей с напряжением 220В, однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73

Понятие реактивной мощности

Реактивная “вредная” мощность – это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.

Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.

Обозначается эта величина латинской буквой Q.

ЗАПОМНИТЕ! Реактивная мощность измеряется не в привычных ваттах (Вт), а в вольт-амперах реактивных (Вар).

Рассчитывается по формуле:

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.

ВАЖНО! При расчете данная величина может быть как положительной, так и отрицательной – в зависимости от движения фазы.

Емкостные и индуктивные нагрузки

Главным отличием реактивной (емкостной и индуктивной) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.

Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле (в течение половины полупериода), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.

ВАЖНО! При работе индуктивной нагрузки кривая тока всегда отстает от кривой напряжения на половину полупериода.

Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.

ВАЖНО! Во время работы емкостной нагрузки кривая тока опережает кривую напряжения на половину полупериода.

Коэффициент мощности cosφ

Коэффициент мощности cosφ (читается косинус фи)– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.

Коэффициент cosφ находится через отношение активной электрической мощности к полной электрической мощности.

ОБРАТИТЕ ВНИМАНИЕ! При более точном расчете следует учитывать нелинейные искажения синусоиды, однако, в обычных расчетах ими пренебрегают.

Значение данного коэффициента может изменяться от 0 до 1 (если расчет ведется в процентах, то от 0% до 100%). Из расчетной формулы не сложно понять, что, чем больше его значение, тем больше активная составляющая, а значит лучше показатели прибора.

Понятие полной мощности. Треугольник мощностей

Полная мощность – это геометрически вычисляемая величина, равная корню из суммы квадратов активной и реактивной мощностей соответственно. Обозначается латинской буквой S.

Также рассчитать полную мощность можно путем перемножения напряжения и силы тока соответственно.

ВАЖНО! Полная мощность измеряется в вольт-амперах (ВА).

Треугольник мощностей – это удобное представление всех ранее описанных вычислений и соотношений между активной, реактивной и полной мощностей.

Катеты отражают реактивную и активную составляющие, гипотенуза – полную мощность. Согласно законам геометрии, косинус угла φ равен отношению активной и полной составляющих, то есть он является коэффициентом мощности.

Как найти активную, реактивную и полную мощности. Пример расчета

Все расчеты строятся на указанных ранее формулах и треугольнике мощностей. Давайте рассмотрим задачу, наиболее часто встречающуюся на практике.

Обычно на электроприборах указана активная мощность и значение коэффициента cosφ. Имея эти данные несложно рассчитать реактивную и полную составляющие.

Для этого разделим активную мощность на коэффициент cosφ и получим произведение тока и напряжения. Это и будет полной мощностью.

Далее, исходя из треугольника мощностей, найдем реактивную мощность равную квадрату из разности квадратов полной и активной мощностей.

Как измеряют cosφ на практике

Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром . Также с этой задачей легко справится цифровой ваттметр.

Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.

  1. Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
  2. Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.

Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.

активную, реактивную, полную[br] (P, Q, S), а также коэффициент мощности (PF)

Из письма клиента:
Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
Алексей. 21 июнь 2007

 

 

В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:

 

 

Мощность не всех приборов указана в Вт, например:

  • Мощность трансформаторов указывается в ВА:
    http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
    http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение)
  • Мощность конденсаторов указывается в Варах:
    http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
    http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение)
  • Примеры других нагрузок — см. приложения ниже.

 

Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.

Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

  1. Активная мощность: обозначение P, единица измерения: Ватт
  2. Реактивная мощность: обозначение Q, единица измерения: ВАр (Вольт Ампер реактивный)
  3. Полная мощность: обозначение S, единица измерения: ВА (Вольт Ампер)
  4. Коэффициент мощности: обозначение k или cosФ, единица измерения: безразмерная величина

Эти параметры связаны соотношениями:  S*S=P*P+Q*Q,   cosФ=k=P/S

Также cosФ называется коэффициентом мощности (Power FactorPF)

Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

Например, электромоторы, лампы (разрядные) — в тех. данных указаны P[кВт] и cosФ:
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
(примеры технических данных разных нагрузок см. приложение ниже)

То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.

Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

 

См. учебники по электротехнике, например:

1. Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.

2. Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.

3. Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.

Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
(перевод: http://electron287.narod.ru/pages/page1.html)

 


Приложение

 

Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)

Трансформаторы питания номинальной выходной мощностью 25-60 ВА
http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП)

 

http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)

 


АОСН-2-220-82
Латр 1.25 АОСН-4-220-82
Латр 2.5 АОСН-8-220-82





АОСН-20-220



АОМН-40-220




http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)

 

 

Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)

http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)

 

http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)

 

 

Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ

Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. — в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности).

http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР)

 

http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)

 

Технические данные разрядных ламп содержат активную мощность (кВт) и cosФ
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ)

 

http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)

 

 

Дополнение 1

Если нагрузка имеет высокий коэффициент мощности (0.8 … 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.

Если нагрузка имеет низкий коэффициент мощности (менее 0.8 … 1.0), то в линии питания циркулируют большие реактивные токи (и мощности). Это паразитное явление приводит к повышению потерь в проводах линии (нагрев и др.), нарушению режима работы источников (генераторов) и трансформаторов сети, а также др. проблемам.

Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.

 

Дополнение 2

Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др.) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 … 1.0, что соответствует нормативным стандартам.

 

Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения

Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.

В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.

 

Дополнение 4

Наглядные примеры чистой активной и чистой реактивных нагрузок:

  • К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
  • К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.

 

Дополнение 5

Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:

+ (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.

— (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.

 

Дополнение 6

В различных областях техники мощность может быть либо полезной, либо паразитной НЕЗАВИСИМО от того активная она или реактивная. Например, необходимо различать активную полезную мощность рассеиваемую на рабочей нагрузке и активную паразитную мощность рассеиваемую в линии электропередачи. Так, например, в электротехнике при расчете активной и реактивной мощностей наиболее часто активная мощность является полезной мощностью, передаваемой в нагрузку и является реальной (не мнимой) величиной. А в электронике при расчёте конденсаторов или расчёте самих линий передач активная мощность является паразитной мощностью, теряемой на разогрев конденсатора (или линии) и является мнимой величиной. Причём, деление на мнимые и немнимые величины производится только для удобства рассчётов. На самом деле, все физические величины конечно реальные.

 

 

Дополнительные вопросы

 

Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?

Ответ:
Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными [6].

Замечание:
Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:

  1. Полное сопротивление (импеданс) Z=R+iX
  2. Полная мощность S=P+iQ
  3. Диэлектрическая проницаемость e=e’+ie»
  4. Магнитная проницаемость m=m’+im»
  5. и др.

 

 

Вопрос 2:

На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?

 

 

Ответ:
Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример [5] реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.

 

 

 

Вопрос 3:
Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.

Ответ:
Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:

 

 

 


См. дополнительную литературу, например:

 

[1]. Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.

[2]. Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.

[3]. Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.

[4]. AC power, Power factor, Electrical resistance, Reactance
http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)

[5]. Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013

[6]. Международная система единиц, СИ, см напр. ГОСТ 8.417-2002. ЕДИНИЦЫ ВЕЛИЧИН

Работа и мощность тока | Физика

1. Работа тока. Закон Джоуля-Ленца

Работа тока

Работу электрического поля по перемещению свободных зарядов в проводнике называют работой тока. При перемещении заряда q вдоль проводника поле совершает работу A = qU (см. § 53), где U – разность потенциалов на концах проводника. Поскольку q = It, работу тока можно записать в виде

A = UIt.

Закон Джоуля-Ленца

Рассмотрим практически важный случай, когда основным действием тока является тепловое действие. В таком случае согласно закону сохранения энергии количество теплоты, выделившееся в проводнике, равно работе тока: Q = A. Поэтому

Q = IUt.     (1)

? 1. Докажите, что количество теплоты Q, выделившееся в проводнике с током, выражается также формулами

Q = I2Rt,     (2)
Q = (U2/R)t.     (3)

Подсказка. Воспользуйтесь формулой (1) и законом Ома для участка цепи.

Мы вывели формулы (1) – (3), используя закон сохранения энергии, но исторически соотношение Q = I2Rt независимо друг от друга установили на опыте российский ученый Эмилий Христианович Ленц и английский ученый Дж. Джоуль за несколько лет до открытия закона сохранения энергии.
Закон Джоуля – Ленца: количество теплоты, выделившееся за время t в проводнике сопротивлением R, сила тока в котором равна I, выражается формулой

Q = I2Rt.

Применение закона Джоуля – Ленца к последовательно и параллельно соединенным проводникам

Выясним, в каких случаях для сравнения количества теплоты, выделившейся в проводниках, удобнее пользоваться формулой (2), а в каких случаях – формулой (3).

Формулу Q = I2Rt удобно применять, когда сила тока в проводниках одинакова, то есть когда они соединены последовательно (рис. 58.1).

Из этой формулы видно, что при последовательном соединении проводников большее количество теплоты выделяется в проводнике, сопротивление которого больше. При этом

Q1/Q2 = R1/R2.

Формулу Q = (U2/R)t удобно применять, когда напряжение на концах проводников одинаково, то есть когда они соединены параллельно (рис. 58.2).

Из этой формулы видно, что при параллельном соединении проводников большее количество теплоты выделяется в проводнике, сопротивление которого меньше. При этом

Q1/Q2 = R2/R1.

? 2. При последовательном соединении в первом проводнике выделилось в 3 раза большее количество теплоты, чем во втором. В каком проводнике выделится большее количество теплоты при их параллельном соединении? Во сколько раз большее?

? 3. Имеются два проводника сопротивлением R1 = 1 Ом и R2 = 2 Ом. Их подключают к источнику напряжения 6 В. Какое количество теплоты выделится за 10 с, если:
а) подключить только первый проводник?
б) подключить только второй проводник?
в) подключить оба проводника последовательно?
г) подключить оба проводника параллельно?
д) чему равно отношение значений количества теплоты Q1/Q2, если проводники включены последовательно? Параллельно?

Поставим опыт
Будем включать в сеть две лампы накаливания с разными сопротивлениями нити накала параллельно и последовательно (рис. 58.3, а, б). Мы увидим, что при параллельном соединении ламп ярче светит одна лампа, а при последовательном – другая.

? 4. У какой из ламп (1 или 2) сопротивление больше? Поясните ваш ответ.

? 5. Объясните, почему при последовательном соединении накал нити каждой лампы меньше, чем накал этой же лампы при параллельном соединении.

? 6. Почему при включении лампы в осветительную сеть нить накала раскаляется добела, а последовательно соединенные в нею соединительные провода почти не нагреваются?

2. Мощность тока

Мощностью тока P называют отношение работы тока A к промежутку времени t, в течение которого эта работа совершена:

P = A/t.     (4)

Единица мощности – ватт (Вт). Мощность тока равна Вт, если совершаемая током за 1 с работа равна 1 Дж. Часто используют производные единицы, например киловатт (кВт).

? 7. Докажите, что мощность тока можно выразить формулами

P = IU,     (5)
P = I2R,     (6)
P = U2/R.     (7)

Подсказка. Воспользуйтесь формулой (4) и законом Ома для участка цепи.

? 8. Какой из формул (5) – (7) удобнее пользоваться при сравнении мощности тока:
а) в последовательно соединенных проводниках?
б) в параллельно соединенных проводниках?

? 9. Имеются проводники сопротивлением R1 и R2. Объясните, почему при последовательном соединении этих проводников

P1/P2 = R1/R2,

а при параллельном

P1/P2 = R2/R1.

? 10. Сопротивление первого резистора 100 Ом, а второго – 400 Ом. В каком резисторе мощность тока будет больше и во сколько раз больше, если включить их в цепь с заданным напряжением:
а) последовательно?
б) параллельно?
в) Чему будет равна мощность тока в каждом резисторе при параллельном соединении, если напряжение в цепи 200 В?
г) Чему при том же напряжении цепи равна суммарная мощность тока в двух резисторах, если они соединены: последовательно? параллельно?

Мощностью электроприбора называют мощность тока в этом приборе. Так, мощность электрочайника – примерно 2 кВт.

Обычно мощность прибора указывают на самом приборе.

Ниже приведены примерные значения мощности некоторых приборов.
Лампа карманного фонарика: около 1 Вт
Лампы осветительные энергосберегающие: 9-20 Вт
Лампы накаливания осветительные: 25-150 Вт
Электронагреватель: 200-1000 Вт
Электрочайник: до 2000 Вт

Все электроприборы в квартире включаются параллельно, поэтому напряжение на них одинакова.

? 11. В сеть напряжением 220 В включен электрочайник мощностью 2 кВт.
а) Чему равно сопротивление нагревательного элемента в рабочем режиме (когда чайник включен)?
б) Чему равна при этом сила тока?

? 12. На цоколе первой лампы написано «40 Вт», а на цоколе второй – «100 Вт». Это – значения мощности ламп в рабочем режиме (при раскаленной нити накала).
а) Чему равно сопротивление нити накала каждой лампы в рабочем режиме, если напряжение в цепи 220 В?
б) Какая из ламп будет светить ярче, если соединить эти лампы последовательно и подключить к той же сети? Будет ли эта лампа светить так же ярко, как и при параллельном подключении?

? 13. В электронагревателе имеются два нагревательных элемента сопротивлением R1 и R2, причем R1 > R2. Используя переключатель, элементы нагревателя можно включать в сеть по отдельности, а также последовательно или параллельно. Напряжение в сети равно U.
а) При каком включении элементов мощность нагревателя будет максимальной? Чему она при этом будет равна?
б) При каком включении элементов мощность нагревателя будет минимальной (но не равной нулю)? Чему она при этом будет равна?
в) Чему равно отношение R1/R2, если максимальная мощность в 4,5 раза больше минимальной?


Дополнительные вопросы и задания

14. На рисунке 58.4 изображена электрическая схема участка цепи, состоящего из четырех одинаковых резисторов. Напряжение на всем участке цепи постоянно. Примите, что зависимостью сопротивления резистора от температуры можно пренебречь.

а) На каком резисторе напряжение самое большое? самое маленькое?
б) В каком резисторе сила тока самая большая? самая маленькая?
в) В каком резисторе выделяется самое большое количество теплоты? самое маленькое количество теплоты?
г) Как изменится количество теплоты, выделяемое в каждом из резисторов 2, 3, 4, если резистор 1 замкнуть накоротко (то есть заменить проводником с очень малым сопротивлением)?
д) Как изменится количество теплоты, выделяемое в каждом из резисторов 2, 3, 4, если отсоединить провод от резистора 1 (то есть заменить этот резистор проводником с очень большим сопротивлением)?

Работа мощность закон джоуля ленца. Работа и мощность тока. Закон Джоуля-Ленца. По закону сохранения энергии

Способность тела производить работу называется энергией тела . Таким образом, мерой количества энергии является работа. Энергия тела тем больше, чем большую работу может произвести это тело при своем движении. Энергия не исчезает, а переходит из одной формы в другую. Например, в генераторе механическая энергия преобразуется в электрическую энергию, а в двигателе – электрическая в механическую. Однако не вся энергия является полезной, т.е. часть ее расходуется на преодоление внутреннего сопротивления источника и проводов.

Работа электрического тока численно равна произведению напряжения, силы тока в цепи и времени его прохождения. Единица измерения – Джоуль.

Для измерения работы или энергии электрического тока используется электроизмерительный прибор − счетчик электрической энергии.

Электрическая энергия помимо джоулей измеряется в ватт-часах или киловатт-часах :

1 Вт·ч = 3 600 Дж, 1 кВт·ч = 1 000 Вт·ч.

Мощность электрического тока – это работа, производимая (или потребляемая) в единицу времени. Единица измерения – Ватт.

Для измерения мощности электрического тока используется электроизмерительный прибор − ваттметр.

Кратными единицами измерения мощности являются киловатт или мегаватт:

1 кВт = 1 000 Вт, 1 МВт = 1 000 000 Вт.

В табл. 1 приведена мощность ряда устройств.

Таблица 1

Название устройства

Мощность устройства, кВт

Лампа карманного фонаря

Холодильник домашний

Лампы осветительные (бытовые)

Электрический утюг

Стиральная машина

Электрическая плита

0,6; 0,8; 1; 1,25

Электропылесос

Лампы в звездах башен Кремля

Двигатель электровоза ВЛ10

Электродвигатель прокатного стана

Гидрогенератор Братской ГЭС

Турбогенератор

50 000 − 1 200 000

Соотношения между мощностью, током, напряжением и сопротивлением приведены на рис. 1.

P U

I R

R·I

Рис. 1

Скорость, с которой механическая или другая энергия преобразуется в источнике в электрическую называется мощностью источника :

где W и – электрическая энергия источника.

Скорость, с которой электрическая энергия преобразуется в приемнике в другие виды энергии, в частности в тепловую, называется мощностью приемника :

Мощность, определяющая непроизвольный расход энергии, например, на тепловые потери в источнике или в проводниках, называют мощностью потерь:

По закону сохранения энергии мощность источника равна сумме мощностей потребителей и потерь:

Это выражение представляет собой баланс мощностей .

Эффективность передачи энергии от источника к приемнику характеризует коэффициент полезного действия (КПД) источника:

где Р 1 или Р ист – мощность, отдаваемая источником энергии во внешнюю цепь;

Р 2 – мощность, получаемая извне или потребляемая мощность;

P или Р 0 вн ) – мощность, расходуемая на преодоление потерь в источник или приемнике энергии.

Электрический ток представляет собой направленное движение электрически заряженных частиц. При столкновении движущихся частиц с молекулами и ионами вещества кинетическая энергия движущихся частиц передается ионам и молекулам, вследствие чего происходит нагревание проводника. Таким образом, электрическая энергия преобразуется в тепловую.

В 1844 г. русским академиком Э.Х. Ленцем и английским ученым Джоулем одновременно и независимо друг от друга был открыт закон, описывающий тепловое действие тока.

Закон Джоуля-Ленца : при прохождении электрического тока по проводнику количество теплоты, выделяемое проводником, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого электрический ток протекает по проводнику:

где Q – количество теплоты, Дж, I – сила тока, А; R – сопротивление проводника, Ом; t – время, в течение которого электрический ток протекал по проводнику, с.

Закон Джоуля-Ленца используют при расчетах тепловых режимов источников электроэнергии, линий электропередачи, потребителей и других элементов электрической цепи. Преобразование электроэнергии в тепловую имеет очень большое практическое значение. Вместе с тем тепловое действие во многих случаях оказывается вредным (рис. 2).

>>Физика: Работа и мощность постоянного тока

Электрический ток получил такое широкое применение потому, что он несет с собой энергию . Эта энергия может быть превращена в любую форму.
При упорядоченном движении заряженных частиц в проводнике электрическое поле совершает работу . Ее принято называть работой тока . Сейчас мы напомним сведения о работе и мощности тока .
Работа тока. Рассмотрим произвольный участок цепи. Это может быть однородный проводник, например нить лампы накаливания, обмотка электродвигателя и др. Пусть за время через поперечное сечение проводника проходит заряд . Электрическое поле совершит при этом работу (U — напряжение между концами участка проводника).
Так как сила тока , то эта работа равна:

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого шел ток.
Согласно закону сохранения энергии эта работа должна быть равна изменению энергии рассматриваемого участка цепи. Поэтому энергия, выделяемая на данном участке цепи за время , равна работе тока (см. формулу (15.12)).
Если на участке цепи не совершается механическая работа и ток не производит химических действий, то происходит только нагревание проводника. Нагретый проводник отдает тепло окружающим телам.
Нагревание проводника происходит следующим образом. Электрическое поле ускоряет электроны. После столкновения с ионами кристаллической решетки они передают ионам свою энергию. В результате энергия беспорядочного движения ионов около положений равновесия возрастает. Это и означает увеличение внутренней энергии. Температура проводника при этом повышается, и он начинает передавать тепло окружающим телам. Спустя некоторое время после замыкания цепи процесс устанавливается, и температура перестает изменяться со временем. К проводнику за счет работы электрического поля непрерывно поступает энергия. Но его внутренняя энергия остается неизменной, так как проводник передает окружающим телам количество теплоты, равное работе тока. Таким образом, формула (15.12) для работы тока определяет количество теплоты, передаваемое проводником другим телам.
Если в формуле (15.12) выразить либо напряжение через силу тока, либо силу тока через напряжение с помощью закона Ома для участка цепи, то получим три эквивалентные формулы:

Формулой удобно пользоваться в случае последовательного соединения проводников, так как сила тока в этом случае одинакова во всех проводниках. При параллельном соединении удобна формула так как напряжение на всех проводниках одинаково.
Закон Джоуля — Ленца. Закон, определяющий количество теплоты, которое выделяет проводник с током в окружающую среду, был впервые установлен экспериментально английским ученым Д. Джоулем (1818-1889) и русским ученым Э. X. Ленцем (1804-1865). Закон Джоуля — Ленца формулируется следующим образом: количество теплоты, выделяемой проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику:

Мы получили этот закон с помощью рассуждений, основанных на законе сохранения энергии. Формула (15.14) позволяет вычислить количество теплоты, выделяемое на любом участке цепи, содержащем какие угодно проводники.
Мощность тока. Любой электрический прибор (лампа, электродвигатель и т. д.) рассчитан на потребление определенной энергии в единицу времени. Поэтому, наряду с работой тока, очень важное значение имеет понятие мощность тока . Мощность тока равна отношению работы тока ко времени прохождения тока.
Согласно этому определению мощность тока

Из этой формулы очевидно, что мощность тока выражается в ваттах (Вт).
Это выражение для мощности тока можно переписать в нескольких эквивалентных формах, используя закон Ома для участка цепи:

На большинстве приборов указана потребляемая ими мощность.
Прохождение по проводнику электрического тока сопровождается выделением в нем энергии. Эта энергия определяется работой тока — произведением перенесенного заряда и напряжения на концах проводника.

???
1. Что называют работой тока?
2. Что такое мощность тока?
3. В каких единицах выражается мощность тока?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский,Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Работа тока — это работа электрического поля по переносу электрических зарядов вдоль проводника;

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.

Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

По закону сохранения энергии:

работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия равна работе тока.

В системе СИ:

ЗАКОН ДЖОУЛЯ -ЛЕНЦА

При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.

В системе СИ:

[Q] = 1 Дж

МОЩНОСТЬ ПОСТОЯННОГО ТОКА

Отношение работы тока за время t к этому интервалу времени.

В системе СИ:

Электростатика и законы постоянного тока — Класс!ная физика


Любознательным

Следы на песке

Если вам приходилось, гулять по пляжу во время отлива, то, вероятно, вы заметили, что, как только нога ступает на мокрый твердый песок, он немедленно подсыхает и белеет вокруг вашего следа. Обычно это объясняют тем, что под тяжестью тела вода «выжимается» из песка. Однако это не так, потому что песок не ведет себя подобно мочалке. Почему же белеет песок? Будет ли песок оставаться белым все время, пока вы стоите на месте?

Оказывается…
Побеление песка на пляже впервые объяснил Рейнольде в 1885 г. Он показал, что объем песка увеличивается, когда на него наступают. До этого песчинки были «упакованы» самым плотным образом. Под действием деформации сдвига, которая возникает под подошвой ботинка, объем, занимаемый песчинками, может лишь увеличиться. В то время как уровень песка поднимается резко, уровень воды может подняться лишь в результате капиллярных явлений, а на это требуется время. Поэтому на дне следа ноги песок некоторое время оказывается выше уровня воды — он сухой и белый.

Джеймс Прескотт Джоуль (слева) и Эмилий Христианович Ленц (справа)

Электрические нагреватели всевозможных типов используются человечеством уже столетия, благодаря свойству электрического тока выделять тепло при прохождении через проводник. У этого явления есть и негативный фактор – перегретая электропроводка из-за слишком большого тока часто становилась причиной короткого замыкания и возникновения пожаров. Выделение тепла от работы электрического тока изучалось в школьном курсе физики, но многие позабыли эти знания.

Впервые зависимость выделения теплоты от силы электрического тока была сформулирована и математически определена Джеймсом Джоулем в 1841 году, и чуть позже, в 1842 г., независимо от него, Эмилем Ленцем. В честь этих физиков и был назван закон Джоуля-Ленца, по которому рассчитывают мощность электронагревателей и потери на тепловыделение в линиях электропередач.

Определение закона Джоуля – Ленца

В словесном определении, согласно исследований Джоуля и Ленца закон звучит так:

Количество теплоты, выделяемой в определенном объеме проводника при протекании электрического тока прямо пропорционально умножению плотности электрического тока и величины напряженности электрического поля

В виде формулы данный закон выглядит следующим образом:


Выражение закона Джоуля — Ленца

Поскольку описанные выше параметры редко применяются в обыденной жизни, и, учитывая, что почти все бытовые расчеты выделения теплоты от работы электрического тока касаются тонких проводников (кабели, провода, нити накаливания, шнуры питания, токопроводящие дорожки на плате и т. п.), используют закон Джоуля Ленца с формулой, представленной в интегральном виде:


Интегральная форма закона

В словесном определении закон Джоуля Ленца звучит так:


Словесное определение закона Джоуля — Ленца

Если принять, что сила тока и сопротивление проводника не меняется в течение времени, то закон Джоуля — Ленца можно записать в упрощенном виде:

Применив закон Ома и алгебраические преобразования, получаем приведенные ниже эквивалентные формулы:


Эквивалентные выражения теплоты согласно закона Ома

Применение и практическое значение закона Джоуля – Ленца

Исследования Джоуля и Ленца в области тепловыделения от работы электрического тока существенно продвинули научное понимание физических процессов, а выведенные основные формулы не претерпели изменений и используются по сей день в различных отраслях науки и техники. В сфере электротехники можно выделить несколько технических задач, где количество выделяемой при протекании тока теплоты имеет критически важное значение при расчете таких параметров:

  • теплопотери в линиях электропередач;
  • характеристики проводов сетей электропроводки;
  • тепловая мощность (количество теплоты) электронагревателей;
  • температура срабатывания автоматических выключателей;
  • температура плавления плавких предохранителей;
  • тепловыделение различных электротехнических аппаратов и элементов радиотехники.

Электроприборы, в которых используется тепловая работа тока

Тепловое действие электрического тока в проводах линий электропередач (ЛЭП) является нежелательным из-за существенных потерь электроэнергии на тепловыделение.

По различным данным в линиях электропередач теряется до 40% всей производимой электрической энергии в мире. Для уменьшения потерь при передаче электроэнергии на большие расстояния, поднимают напряжение в ЛЭП, производя расчеты по производным формулам закона Джоуля – Ленца.


Диаграмма всевозможных потерь электроэнергии, среди которых теплопотери на воздушных линиях составляют львиную долю (64%)

Очень упрощенно тепловую работу тока можно описать следующим образом: двигаются электроны между молекулами, и время от времени сталкиваются с ними, отчего их тепловые колебания становятся более интенсивными. Наглядная демонстрация тепловой работы тока и ассоциативные пояснения процессов показаны на видео ниже:

Расчеты потерь электроэнергии в линиях электропередач

В качестве примера можно взять гипотетический участок линии электропередач от электростанции до трансформаторной подстанции. Поскольку провода ЛЭП и потребитель электроэнергии (трансформаторная подстанция) соединены последовательно , то через них течет один и тот же ток I. Согласно рассматриваемому тут закону Джоуля – Ленца количество выделяемой на проводах теплоты Q w (теплопотерь) рассчитывается по формуле:

Производимая электрическим током мощность (Q c) в нагрузке рассчитывается согласно закону Ома:

Таким образом, при равенстве токов, в первую формулу можно вставить вместо I выражение Q c /U c , поскольку I = Q c /U c:

Если проигнорировать зависимость сопротивления проводников от изменения температуры, то можно считать R w неизменным (константой). Таким образом, при стабильном энергопотреблении потребителя (трансформаторной подстанции), тепловыделение в проводах ЛЭП будет обратно пропорционально квадрату напряжения в конечной точке линии. Другими словами, чем больше напряжение электропередачи, тем меньше потери электроэнергии.


Для передачи электроэнергии высокого напряжения требуются большие опоры ЛЭП

Работа закона Джоуля – Ленца в быту

Данные расчеты справедливы также и в быту при передаче электроэнергии на малые расстояния – например, от ветрогенератора до инвертора. При автономном энергоснабжении ценится каждый Ватт выработанной низковольтным ветряком энергии, и возможно, будет выгодней поднять напряжение трансформатором прямо у ветрогенератора, чем тратиться на большое сечение кабеля, чтобы уменьшить потери электроэнергии при передаче.


При значительном удалении низковольтного ветрогенератора переменного тока для уменьшения потерь электроэнергии будет выгодней подключение через повышающий трансформатор

В бытовых сетях электропроводки расстояния крайне малы, чтобы уменьшения тепловых потерь поднимать напряжение, поэтому при расчете проводки учитывается тепловая работа тока, согласно закону Джоуля – Ленца при выборе поперечного сечения проводов, чтобы их тепловой нагрев не привел к оплавлению и возгоранию изоляции и окружающих материалов. Выбор кабеля по мощности и электропроводки проводятся согласно таблиц и нормативных документов ПУЭ, и подробно описаны на других страницах данного ресурса.


Соотношения силы тока и поперечного сечения проводников

При расчете температуры нагрева радиотехнических элементов, биметаллической пластины автоматического выключателя или плавкого предохранителя используется закон Джоуля – Ленца в интегральной форме, так как при росте температуры изменяется сопротивление данных материалов. При данных сложных расчетах также учитываются теплоотдача, нагрев от других источников тепла, собственная теплоемкость и множество других факторов.


Программное моделирование тепловыделения полупроводникового прибора

Полезная тепловая работа электрического тока

Тепловыделяющая работа электрического тока широко применяется в электронагревателях, в которых используется последовательное соединение проводников с различным сопротивлением. Данный принцип работает следующим образом: в соединенных последовательно проводниках течет одинаковый ток, значит, согласно закону Джоуля – Ленца, тепла выделится больше у материала проводника с большим сопротивлением.


Спираль с повышенным сопротивлением накаляется, но питающие провода остаются холодными

Таким образом, шнур питания и подводящие провода электроплитки остаются относительно холодными, в то время как нагревательный элемент нагревается до температуры красного свечения. В качестве материала для проводников нагревательных элементов используются сплавы с повышенным (относительно меди и алюминия электропроводки) удельным сопротивлением — нихром, константан, вольфрам и другие.


Нить лампы накаливания изготовляют из тугоплавких вольфрамовых сплавов

При параллельном соединении проводников тепловыделение будет больше на нагревательном элементе с меньшим сопротивлением, так как при его уменьшении возрастает ток относительного соседнего компонента цепи. В качестве примера можно привести очевидный пример свечения двух лампочек накаливания различной мощности – у более мощной лампы тепловыделение и световой поток больше.

Если прозвонить омметром лампочки, то окажется, что у более мощной лампы сопротивление меньше. На видео ниже автор демонстрирует последовательное и параллельное подключение, но к сожалению, он ошибся в комментарии — будет ярче светить лампа с большим сопротивлением, а не наоборот.

Содержание:

Знаменитый русский физик Ленц и английский физик Джоуль, проводя опыты по изучению тепловых действий электрического тока, независимо друг от друга вывели закон Джоуля-Ленца. Данный закон отражает взаимосвязь количества теплоты, выделяемого в проводнике, и электрического тока, проходящего по этому проводнику в течение определенного периода времени.

Свойства электрического тока

Когда электрический ток проходит через металлический проводник, его электроны постоянно сталкиваются с различными посторонними частицами. Это могут быть обычные нейтральные молекулы или молекулы, потерявшие электроны. Электрон в процессе движения может отщепить от нейтральной молекулы еще один электрон. В результате, его кинетическая энергия теряется, а вместо молекулы происходит образование положительного иона. В других случаях электрон, наоборот, соединиться с положительным ионом и образовать нейтральную молекулу.

В процессе столкновений электронов и молекул происходит расход энергии, в дальнейшем превращающейся в тепло. Затраты определенного количества энергии связаны со всеми движениями, во время которых приходится преодолевать сопротивление. В это время происходит превращение работы, затраченной на преодоление сопротивления трения, в тепловую энергию.

Закон джоуля Ленца формула и определение

Согласно закону джоуля Ленца, электрический ток, проходящий по проводнику, сопровождается количеством теплоты, прямо пропорциональным квадрату тока и сопротивлению, а также времени течения этого тока по проводнику.

В виде формулы закон Джоуля-Ленца выражается следующим образом: Q = I 2 Rt, в которой Q отображает количество выделенной теплоты, I — , R — сопротивление проводника, t — период времени. Величина «к» представляет собой тепловой эквивалент работы и применяется в тех случаях, когда количество теплоты измеряется в калориях, сила тока — , сопротивление — в Омах, а время — в секундах. Численное значение величины к составляет 0,24, что соответствует току в 1 ампер, который при сопротивлении проводника в 1 Ом, выделяет в течение 1 секунды количество теплоты, равное 0,24 ккал. Поэтому для расчетов количества выделенной теплоты в калориях применяется формула Q = 0,24I 2 Rt.

При использовании системы единиц СИ измерение количества теплоты производится в джоулях, поэтому величина «к», применительно к закону Джоуля-Ленца, будет равна 1, а формула будет выглядеть: Q = I 2 Rt. В соответствии с I = U/R. Если это значение силы тока подставить в основную формулу, она приобретет следующий вид: Q = (U 2 /R)t.

Основная формула Q = I 2 Rt очень удобна для использования при расчетах количества теплоты, которое выделяется в случае последовательного соединения. Сила тока во всех проводниках будет одинаковая. При последовательном соединении сразу нескольких проводников, каждый из них выделит столько теплоты, которое будет пропорционально сопротивлению проводника. Если последовательно соединить три одинаковые проволочки из меди, железа и никелина, то максимальное количество теплоты будет выделено последней. Это связано с наибольшим удельным сопротивлением никелина и более сильным нагревом этой проволочки.

При параллельном соединении этих же проводников, значение электрического тока в каждом из них будет различным, а напряжение на концах — одинаковым. В этом случае для расчетов больше подойдет формула Q = (U 2 /R)t. Количество теплоты, выделяемое проводником, будет обратно пропорционально его проводимости. Таким образом, закон Джоуля — Ленца широко используется для расчетов установок электрического освещения, различных отопительных и нагревательных приборов, а также других устройств, связанных с преобразованием электрической энергии в тепловую.

Закон Джоуля-Ленца. Работа и мощность электрического тока

Поделись статьей:

Похожие статьи

основных единиц простых электрических цепей, Рон Куртус

SfC Home> Физика> Электричество>

Рона Куртуса (от 23 октября 2019 г.)

Базовые блоки простой электрической цепи — это ампер, вольт и ом.

Простая схема обычно состоит из источника напряжения, металлических проводов, проводящих электрический ток, и одного или нескольких резисторов, препятствующих прохождению тока.Ток может быть постоянным (DC) или переменным (AC), и не должно быть дополнительных устройств, влияющих на ток.

Единица измерения электрического тока — ампер — является основной единицей международного стандарта (СИ). Единицы измерения напряжения и сопротивления являются производными от ампера и других стандартных единиц. К сожалению, международный комитет ученых сделал определения более сложными, чем они должны быть.

Вопросы, которые могут у вас возникнуть:

  • Какое определение для ампер?
  • Что за вольт?
  • Что такое единица сопротивления?

Этот урок ответит на эти вопросы.Полезный инструмент: Конвертация единиц



Ампер

Ампер ( A ) — основная единица измерения электрического тока в системе СИ. Его можно определить как количество электрического заряда или количество электронов, которые проходят точку в цепи за одну секунду. Один ампер равен 6,241 * 10 18 электронов, проходящих точку в секунду или один кулон в секунду. (Кулон ( C ) — единица измерения электрического заряда в системе СИ.)

Официальное определение ампера в системе СИ несколько странно:

«Ампер — это тот постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины, с ничтожно малым круглым поперечным сечением и помещать на расстоянии 1 метра в вакууме, создавал бы между этими проводниками силу, равную 2 * 10 — 7 ньютона на метр длины.«

Примечание : Я считаю, что требование наличия проводника бесконечной длины и «незначительного» поперечного сечения нецелесообразно и не входит в стандартное определение. Кроме того, существуют неустановленные последствия отношения силы между двумя проводами и током, которые следует выразить.

Поскольку является базовой единицей СИ, она не выражается в других единицах.

Вольт

Вольт ( В, ) — производная единица измерения электрического потенциала или электродвижущей силы в системе СИ, которая заставляет электроны двигаться.Поскольку источник электричества создает энергию, вольт можно определить как разность потенциалов между двумя точками в электрической цепи, которая будет передавать один джоуль ( Дж ) энергии на один кулон ( C ) заряда, который проходит через него.

В = Дж / К

Напряжение также можно указать как электрический потенциал вдоль провода, когда электрический ток в один ампер рассеивает один ватт ( Вт, ) мощности ( Вт = Дж / с).

V = W / A

Вольт может быть указан в основных единицах СИ как 1 В = 1 кг · м 2 с −3 A −1 (один килограмм-метр в квадрате в секунду в кубе на ампер).

Принимая во внимание официальное определение ампера в системе СИ, вольт также равен разности потенциалов между двумя параллельными бесконечными плоскостями, расположенными на расстоянии 1 метра друг от друга, которые создают электрическое поле в 1 ньютон на кулон.

Ом

Ом ( Ом, ) — это единица электрического сопротивления в цепи.Он определяется как сопротивление между двумя точками проводника, когда постоянная разность потенциалов в 1 вольт ( В ), приложенная к этим точкам, создает в проводнике ток в 1,0 ампер ( A ), при условии, что проводник не источник какой-либо электродвижущей силы, например, в батарее.

Ом = В / А

Обратите внимание на , что это также уравнение закона Ома.

Указание сопротивления в основных единицах СИ:

Ом = кг · м 2 с −3 A −2

Электрическое сопротивление также зависит от поперечного сечения провода, а также от его температуры.

Сводка

Ампер ( A ) — это основная единица СИ, состоящая из количества электрического заряда или количества электронов, которые проходят точку в электрической цепи за одну секунду. Вольт ( В, ) — это электрический потенциал, заставляющий электроны двигаться по проводу. Это джоуль энергии на кулон заряда. Ом ( Ом ) — это единица электрического сопротивления, равная 1 вольту, деленному на 1 ампер.


Excel в том, чем вы занимаетесь


Ресурсы и ссылки

Полномочия Рона Куртуса

Сайты

Единица электрического тока (ампер) — Национальный институт стандартов и технологий (NIST)

Ампер — Википедия

Кулоновская сила — Wolfram Science World

Кулон — Википедия

Напряжение — HyperPhysics

Разница электрических потенциалов — Кабинет физики

Вольт — Википедия

Ом — Википедия

Электроэнергетические ресурсы постоянного и переменного тока

Физические ресурсы

Книги

Научитесь электричеству и электронике Стэна Гибилиско; Макгроу-Хилл; (2001) 34 доллара.95 — Руководство для профессионалов, любителей и техников, желающих изучить цепи переменного и постоянного тока


Вопросы и комментарии

Есть ли у вас какие-либо вопросы, комментарии или мнения по этой теме? Если да, отправьте свой отзыв по электронной почте. Я постараюсь вернуться к вам как можно скорее.


Поделиться страницей

Нажмите кнопку, чтобы добавить эту страницу в закладки или поделиться ею через Twitter, Facebook, электронную почту или другие службы:


Студенты и исследователи

Веб-адрес этой страницы:
www.school-for-champions.com/science/
electric_basic_units.htm

Пожалуйста, включите его в качестве ссылки на свой веб-сайт или в качестве ссылки в своем отчете, документе или тезисе.

Авторские права © Ограничения


Где ты сейчас?

Школа чемпионов

Физические темы

Основные элементы электрических цепей

Что такое единица измерения мощности?

Обновлено 15 декабря 2020 г.

Крис Дезил

Физики используют повседневные слова, казалось бы, странным и очень специфическим образом.Для физика работа ( W ) — это не то, чем вы занимаетесь с девяти до пяти по будням. Это произведение силы ( F ), приложенной к объекту, на расстояние ( d ), на которое объект перемещается в результате этой силы.

W = Fd

Если объект не двигается, значит, работа не выполнялась. Попробуйте объяснить это мужчине, который пытается вытолкнуть вашу машину из канавы, но ему не удается заставить машину двинуться с места.

Физики также используют слово «мощность» ( P ) определенным образом.Для них сила — это не то, что вы получаете, плотно позавтракав. Это время ( t ), необходимое для выполнения определенного объема работы. Уравнение мощности:

P = \ frac {W} {t}

Другими словами, мощность — это скорость выполнения работы. Это также скорость передачи тепла и электроэнергии. При изучении электричества формула мощности выглядит так:

P = VI

, где В, — напряжение в цепи, а I — ток, протекающий по этой цепи.

Знание того, что слово «мощность» означает для физиков, поможет вам понять единицы мощности. В системе СИ (метрическая) единицами измерения являются ватты. При измерении в имперской системе единицы измерения — фут-фунты в секунду или лошадиные силы. Одна лошадиная сила равна 550 фут-фунтам в секунду.

Ватт — единицы мощности в системе СИ

Система СИ (международная система), также известная как метрическая система, имеет всего семь базовых единиц. Все остальные единицы являются производными от них.В системе СИ длина измеряется в метрах, масса — в килограммах, а время — в секундах. Сила равна массе, умноженной на ускорение (из второго закона Ньютона), поэтому единицы измерения — кг-м / с 2 . Это означает, что единицы работы — кг-м 2 / с 2 . Вместо того, чтобы использовать эти единицы в каждом вычислении, что было бы громоздко, ученые определяют джоуль (Дж) (названный в честь физика Джеймса Прескотта Джоуля) как 1 кг-м 2 / с 2 . Джоуль также является единицей энергии в системе СИ, хотя при измерении в сантиметрах и граммах принято использовать эрги.3

Что такое мощность в лошадиных силах?

Если вам нравятся автомобили, вы знаете, что номинальная мощность автомобильных двигателей всегда указывается в лошадиных силах. Это означает, что лошадиные силы — это тоже единица мощности, но откуда она взялась и почему до сих пор используется?

Оказывается, что никто иной, как Джеймс Ватт, не является человеком, ответственным за эту единицу власти. Чтобы продать свои паровые машины, он должен был оценить объем работы, которую они могли выполнить за определенное время. Он создал единицу, основанную на том, сколько работы может сделать одна пони в яме.В то время было хорошо известно, что одна пони может поднять 220 фунтов угля вверх по 100-футовой шахте за одну минуту. Это равняется 22 000 фут-фунт / мин. Затем он ошибочно предположил, что обычная лошадь может делать на 50% больше работы, и произвольно определил мощность в лошадиных силах как 33 000 фут-фунт / мин, что равно 550 фут-фунт / с. В единицах СИ это 745,7 Вт.

В качестве единицы мощности лошадиные силы обычно резервируются для двигателей и — иногда — охлаждающей способности кондиционера. Почему мы до сих пор его используем? Вероятно, по той же причине, по которой люди в некоторых странах, включая США, до сих пор используют имперскую систему измерения: привычка.

Energy and Power Units: основы

[pagebreak: Energy and Power Units: The Basics]

Если вы изучаете зеленые технологии, особенно возобновляемые источники энергии, вы не можете не столкнуться с такими утверждениями:

  • 26-ваттная КЛЛ производит свет, эквивалентный Лампа накаливания мощностью 100 Вт.
  • Энергетическая ценность галлона этанола варьируется от 75 700 БТЕ до 84 000 БТЕ.
  • Toyota Prius Hybrid Synergy Drive включает в себя 67-сильный электродвигатель.

Но что такое ватты, БТЕ и лошадиные силы? Что они измеряют и как они относятся к возобновляемой энергии? Например, сколько ватт вырабатывает ветряная турбина и сколько домов будет на эту мощность? Сколько БТЕ требуется для обогрева среднего дома и сколько для этого требуется природного газа?

Прежде чем вы сможете ответить на такие вопросы, вы должны овладеть некоторыми основными понятиями и словарным запасом:

  • Что такое энергия и мощность и как они соотносятся друг с другом?
  • Какие стандартные единицы энергии и мощности используют ученые?
  • Какие традиционные единицы используются в промышленности и как они соотносятся со стандартными единицами измерения?
  • Как различные блоки применимы к таким приложениям, как освещение, отопление и транспорт?

Этот отчет представляет собой краткий обзор энергии, мощности и единиц, используемых для их измерения.Но не волнуйтесь; это не физика в старших классах снова и снова. Это больше похоже на курс Берлитца по энергетической речи — достаточно, чтобы вы могли прочитать меню и, возможно, подслушать местных жителей.

Вот список содержания:

Боб Беллман — внештатный писатель по технологиям и консультант по маркетингу.

[pagebreak: SI: Международная система единиц]

На протяжении веков ученые шли разными путями, исследуя энергию и мощь. Таким образом, каждый вид энергии — электрическая, механическая, химическая, тепловая и ядерная — приобрел свою собственную систему измерения, и каждая отрасль, связанная с энергетикой, разработала свою собственную терминологию.Автосалоны говорят о лошадиных силах. Подрядчики HVAC устанавливают тонны и БТЕ. Электроэнергетика поставляет киловатт-часы. Ученые называют ньютоны и джоули.

В 1960 году Международная система единиц (СИ) была получена из метрической системы, чтобы обеспечить стандартный словарь для всех физических вещей. СИ построена на семи основных единицах (см. Таблицу 1), из которых могут быть выведены все другие физические величины. В таблице 2 перечислены некоторые стандартные производные единицы. Например, ньютон (производная единица силы) определяется как один килограмм (базовая единица массы), ускоренный со скоростью один метр (базовая единица длины) в секунду (базовая единица времени) в квадрате.В таблице 3 перечислены некоторые стандартные префиксы, используемые для обозначения кратных и дробных единиц. Например, мегаватт (МВт) равен миллиону (10 6 ) ватт; Милливатт (мВт) составляет одну тысячную (10 -3 ) ватта.

Отрасли, связанные с энергетикой, начинают использовать терминологию СИ, но традиционные термины по-прежнему доминируют. Многие автомобильные компании теперь указывают мощность двигателя в киловаттах, но в скобках после номинальной мощности: 187 л.с. (140 кВт). Начиная с краткого руководства по энергии, мощности и силе, в следующих нескольких разделах рассматриваются единицы, наиболее часто используемые в приложениях для возобновляемых источников энергии.

Таблица 1: Базовые единицы СИ

Таблица 2: Некоторые производные единицы СИ

Таблица 3: Некоторые множители СИ

[разрыв страницы: Энергия 101: Джоули, Ватты и Ньютоны]

Проще говоря, энергия — емкость для выполнения работы ( W ) — все, от запуска автомобиля до обогрева дома и освещения комнаты. Многие формы работы предполагают преобразование энергии. Лампочка преобразует электрическую энергию в тепловую и световую. Двигатель внутреннего сгорания преобразует химическую энергию в тепловую и механическую.Динамо-машина превращает механическую энергию в тепловую и электрическую.

Решения в области возобновляемых источников энергии используют источники энергии, которые не будут исчерпаны этими преобразованиями, и снижают потребление энергии, делая преобразования более эффективными. Фотоэлектрические (PV) панели вырабатывают электричество из солнечного света вместо сжигания невозобновляемых ископаемых видов топлива. Компактные люминесцентные лампы (КЛЛ) потребляют меньше энергии, чем лампы накаливания, поскольку они преобразуют больше электричества в свет и меньше — в тепло.

Поскольку энергия и работа — две стороны одной медали, они измеряются в одних и тех же единицах. Единица измерения энергии / работы в системе СИ — джоулей (Дж), названная в честь английского физика Джеймса Прескотта Джоуля (1818 — 1889). Джоуль открыл связь между теплотой и механической работой, что привело к развитию законов термодинамики.

Один джоуль равен работе, совершаемой силой в один ньютон, перемещающей объект на один метр (Дж = Н · м). Это примерно столько энергии, сколько требуется, чтобы поднять небольшое яблоко на один метр против силы тяжести Земли.Один джоуль также равен энергии, необходимой для перемещения электрического заряда в один кулон через разность электрических потенциалов в один вольт (J = C · V).

Мощность (P) — это скорость передачи или преобразования энергии. Таким образом, мощность равна работе, разделенной на время (P = Вт / т). Единица измерения мощности в системе СИ — Вт, (Вт), в честь шотландского изобретателя Джеймса Ватта (1736-1819). Усовершенствования Ватта в паровой машине помогли запустить промышленную революцию. По иронии судьбы, сам Ватт ввел термин «лошадиные силы», чтобы охарактеризовать преимущества своего парового двигателя.

Один ватт равен одному джоулю в секунду (Вт = Дж / с). Человек, поднимающийся по лестнице, работает с мощностью около 200 Вт. В электрических приложениях один ватт равен одному вольту, умноженному на один ампер (Вт = В · А). Лампы накаливания используют электрическую энергию мощностью от 40 до 150 Вт.

Force редко упоминается в разговорах о возобновляемых источниках энергии, за исключением ненаучного смысла: «Высокая цена бензина заставляет меня ходить на работу». Тем не менее, сила — важное понятие. Физики выделили четыре фундаментальных силы или взаимодействия: электромагнитная сила действует между электрическими зарядами, гравитационная сила действует между массами, а сильные и слабые силы удерживают вместе атомные ядра.Толчок и притяжение этих сил проявляются как энергия. Например, электромагнитная сила тянет электроны через проводник, создавая электрический ток. Гравитация тянет воду через турбины на гидроэлектростанции.

Силовая единица СИ — ньютон (Н) в честь английского физика сэра Исаака Ньютона (1643 — 1727). Многие считают, что Ньютон как личность оказал наибольшее влияние на историю науки, опередив даже Альберта Эйнштейна. Единица измерения Ньютон — это сила, которая ускоряет массу в один килограмм со скоростью один метр в секунду в квадрате (N = кг · м / с 2 ).Сила земного притяжения на человека весом 70 кг (154 фунта) составляет около 686 ньютонов.

[pagebreak: Механическая энергия: фут-фунты и лошадиные силы]

Из всех форм энергии механическую энергию, вероятно, легче всего понять — просто попробуйте поднять тяжелый чемодан. Таким образом, традиционной единицей механической энергии является фут-фунт (фут-фунт), количество работы, необходимое для перемещения объекта весом один фунт на расстояние в один фут. Один фут-фунт равен примерно 1,36 Дж. Метрическая аналогия фут-фунта — ньютон-метр (Н · м).Один ньютон-метр равен одному джоуля.

Вероятно, наиболее известной единицей механической мощности является (л.с.) мощностью лошадиных сил, задуманная Джеймсом Ваттом в 1782 году, чтобы выставить свой паровой двигатель среди конкурентов. Ватт определил, что «идеальная» шахтная пони может поднять 33000-фунтовое ведро угля на один фут за одну минуту, и соответственно определил механическую мощность в лошадиных силах.

Хотя 33000 фут-фунт / мин звучит много, мощность в лошадиных силах — относительно небольшая единица, равная примерно 746 Вт. Тостерная печь потребляет около 1000 Вт (1.3 л.с.), а на мощной газонокосилке только для того, чтобы раскрутить лезвие, требуется не менее 5 л.с. Четырехцилиндровый двигатель седана Honda Accord 2007 года выпуска развивает 166 л.с. 12-цилиндровый двигатель нового Rolls-Royce Phantom выдает 453 л.с.

Greentech-компании решают проблемы механической энергии по нескольким направлениям. Биотопливо, гибридные бензиновые / электрические двигатели, подключаемые гибриды и другие технологии сокращают количество парниковых газов, образующихся при создании механической энергии. Они также помогают отучить автомобили и другую технику от ископаемого топлива.В гибридном двигателе Toyota Prius используется меньше бензина, чем в обычном двигателе, поскольку его мощность внутреннего сгорания составляет всего 76 л.с.

Исследование материалов способствует дальнейшему снижению затрат на механическую энергию. Помните, работа равна весу, умноженному на расстояние. До 50 процентов Boeing 787 Dreamliner изготовлено из легких композитных материалов. Это, наряду с повышенным КПД двигателя, позволяет 787 использовать на 20 процентов меньше топлива, чем другие самолеты аналогичного размера.

[pagebreak: Электрическая энергия: вольты, амперы и киловатты]

Электрическая энергия менее интуитивна, чем механическая энергия, потому что она действует незаметно.Ближайшим аналогом подъема тяжелого чемодана является сила, которую вы чувствуете, когда играете с магнитами.

Электрическая энергия основана на притяжении и отталкивании заряженных частиц, т. Е. На электромагнитной силе. Сила зарядов и расстояние между частицами вместе создают разность электрических потенциалов или напряжение. В электрических приложениях напряжение тянет электроны через проводник, чтобы создать ток, в отличие от силы тяжести, тянущей молекулы воды по трубе.

Стандартная единица электрического заряда — кулонов (Кл). Шарль-Огюстен де Кулон (1736–1806) был французским физиком, открывшим связь между электрическими зарядами, расстоянием и силой. Кулон — это количество заряда, переносимое током в один ампер за одну секунду (C = A · s), и это удивительно большая единица. Сила отталкивания между двумя зарядами +1 кулон, находящимися на расстоянии одного метра друг от друга, составляет 9 x 10 9 Н, или более миллиона тонн! Таким образом, заряд чаще всего измеряется в микро- или нанокулонах.

Стандартная единица электрического потенциала — вольт (В), в честь графа Алессандро Вольта (1745 — 1827), известного разработкой электрических батарей. Вольт эквивалентен одному джоулю энергии на кулон заряда (V = Дж / Кл). Бытовая электрическая сеть в США обычно составляет 110 В, хотя 220 В может использоваться для тяжелой бытовой техники. Обычный аккумулятор фонарика выдает 1,5 В, а мощность молнии может составлять около 100 МВ. Линии дальней связи работают от 110 до 1200 кВ.

Стандартная единица измерения электрического тока — ампер, (А) или ампер. Французский физик Андре-Мари Ампер (1775–1836) был одним из главных первооткрывателей электромагнетизма. Один ампер равен перемещению одного кулона заряда в секунду (A = C / s). Большинство бытовых цепей потребляют менее 15 А.

Большая часть электроэнергии вырабатывается за счет сжигания ископаемого топлива. Фотоэлектрические, ветряные турбины и другие технологии предлагают чистые возобновляемые альтернативы, но им предстоит пройти долгий путь, чтобы заменить существующие генерирующие установки.В 2006 году электростанции, работающие на ископаемом топливе, в США произвели 2874 миллиарда кВтч, а атомные станции — 787 миллиардов кВтч. Все вместе взятые возобновляемые источники энергии произвели 385 миллиардов киловатт-часов, что составляет менее 10 процентов от общего производства в США.

Отчасти проблема заключается в масштабе. Крупная установка, работающая на нефти, газе или угле, вырабатывает от 2 до 3 ГВт на полную мощность. Большинство концентрирующих солнечных установок вырабатывают десятки мегаватт, в то время как современная ветряная турбина вырабатывает около 3 МВт. Предлагаемому проекту Кейп-Уинд необходимо 130 турбин, чтобы обеспечить всего три четверти электроэнергии Кейп-Код.Типичная домашняя фотоэлектрическая система, подключенная к электросети, вырабатывает менее 6 кВт.

С другой стороны, доступно множество возобновляемых источников энергии, если мы просто сможем понять, как их использовать. Количество энергии солнечного света, падающего на один квадратный метр поверхности Земли, составляет примерно один кВт в секунду или 3600 кВт в час. Холодильники и тостеры потребляют от 1,0 до 1,5 кВт каждая. Лампы накаливания потребляют от 40 до 150 Вт, а КЛЛ излучают такое же количество света мощностью от 10 до 40 Вт.S. home потребляет около 1000 кВтч в месяц, малая часть солнечной энергии, которая попадает на его крышу.

[pagebreak: Тепловая энергия: БТЕ, калории и тонны]

Тепловая энергия — это содержание энергии в системе, связанное с повышением или понижением температуры объекта. Тепло — это поток тепловой энергии между двумя объектами, вызванный разницей в температуре. Возьмите чашку горячего кофе в холодный день, и вы ощутите действие тепловой энергии.

Британская тепловая единица (БТЕ или БТЕ) обычно используется для описания содержания энергии в топливе и мощности систем отопления и охлаждения.Одна БТЕ — это количество энергии, необходимое для повышения температуры одного фунта воды на один градус Фаренгейта. Существует несколько различных определений BTU, основанных на начальной температуре воды, но в целом одна BTU равна примерно 1055 Дж, примерно 780 фут-фунтам и примерно 0,3 ватт-часам.

При сгорании химическая энергия топлива преобразуется в тепловую энергию или тепло. Выход топочного мазута № 2 составляет около 138 000 БТЕ на галлон. Сжигание фунта угля дает около 15 000 БТЕ; сжигание кубического фута природного газа, около 1000 БТЕ.Для обогрева дома площадью 2 000 квадратных футов в Новой Англии требуется примерно 95 000 БТЕ / ч.

Одной из проблем, с которыми сталкиваются сторонники биотоплива, является более низкое энергосодержание этанола по сравнению с бензином. Галлон бензина содержит около 115 000 БТЕ, а галлон этанола — около 80 000 БТЕ. Таким образом, при сжигании этанола образуется меньше механической энергии, чем при сжигании бензина, и автомобили проезжают меньше миль на галлон. С топливом E10 (10 процентов этанола, 90 процентов бензина) сокращение пробега незначительно.С E85 (85 процентов этанола, 15 процентов бензина) водители видят сокращение пробега как минимум на 15 процентов. Некоторые автопроизводители устанавливают топливные баки большего размера, поэтому ассортимент их автомобилей с гибким топливом аналогичен бензиновым.

К другим единицам тепловой энергии относятся калорийность, терм и квадратик. small или грамм калорий (кал) — это количество энергии, необходимое для повышения температуры одного грамма воды на один градус Цельсия. большой или килограмм калорий (ккал) — это энергия, необходимая для повышения температуры одного килограмма воды на 1 ° C.Как и БТЕ, калорийность имеет разные значения в зависимости от начальной температуры воды. В среднем одна кал составляет около 4,18 Дж, а одна ккал — около 4,18 кДж или почти 4 БТЕ. Пищевые калории основаны на килограммах калорий.

Модель therm (thm) равна 100 000 БТЕ и приблизительно равна количеству энергии, выделяемой при сжигании 100 кубических футов природного газа.

quad равен квадриллиону (1015) БТЕ и используется при обсуждении энергетического бюджета целых стран.В 1950 году США потребили 34,6 квадрата энергии. К 1970 году общее потребление выросло до 67,8 квадратов; к 1990 г. — 84,7 четверных; а к 2006 г. — 99,9 четверных. Количество возобновляемых источников энергии — гидроэнергии и биомассы — в 1950 году составляло 8,6 процента. К 2006 году потребление возобновляемых источников энергии — гидроэнергии, биомассы, геотермальной, солнечной и ветровой энергии — упало до 6,9 процента от общего объема.

Тепловая мощность измеряется в БТЕ в час (БТЕ / ч), часто сокращенно просто БТЕ. Большинство номинальных значений нагрева и охлаждения в БТЕ — действительно БТЕ / ч.Один ватт равен примерно 3,41 БТЕ / ч. Одна лошадиная сила составляет более 2500 БТЕ / ч.

Мощность охлаждения часто оценивается в тонн . Одна тонна охлаждения — это количество энергии, необходимое для растопления одной тонны льда за 24 часа и равное 12000 БТЕ / ч. Типичная домашняя центральная система кондиционирования воздуха рассчитана на мощность от 4 до 5 тонн (от 48 000 до 60 000 БТЕ / ч). Комнатные кондиционеры работают от 5000 до 15000 БТЕ / ч.

В настоящее время Министерство энергетики США применяет 13-й сезонный стандарт энергоэффективности (SEER) для новых бытовых центральных кондиционеров.SEER определяется как общая мощность охлаждения в БТЕ, деленная на общую потребляемую энергию в ватт-часах (SEER = БТЕ / Вт · ч). Повышая стандарт SEER с 10 до 13, Министерство энергетики ожидает, что США сэкономят 4,2 квадрата энергии в период с 2006 по 2030 год с параллельным сокращением выбросов парниковых газов.

[разрыв страницы: Сравнение единиц измерения и коэффициенты преобразования]

Из-за своего разнообразного наследия блоки энергии и мощности сильно различаются по размеру. На Рисунке 1 показаны энергетические единицы, а на Рисунке 2 — силовые агрегаты.Обратите внимание, что вертикальный масштаб на обоих графиках логарифмический; каждая горизонтальная линия представляет собой десятикратное увеличение по сравнению с линией ниже.

Рисунок 1: Сравнение единиц энергии

Рисунок 2: Сравнение единиц мощности

В таблицах 4 и 5 перечислены коэффициенты преобразования между выбранными единицами энергии и мощности.

Таблица 4: Выбранные единицы измерения энергии и коэффициенты преобразования

Таблица 5: Выбранные единицы мощности и коэффициенты преобразования

Что такое электроэнергия? Определение, единицы и типы

Определение: Скорость, с которой выполняется работа в электрической цепи, называется электрической мощностью.Другими словами, электрическая мощность определяется как скорость передачи энергии. Электроэнергия вырабатывается генератором, а также может поставляться электрическими батареями. Он дает низкоэнтропийную форму энергии, которая переносится на большие расстояния, а также преобразуется в различные другие формы энергии, такие как движение, тепловая энергия и т. Д.

Электроэнергия делится на два типа: мощность переменного тока и мощность постоянного тока. Классификация электроэнергии зависит от характера тока.Электроэнергия продается в джоулях, которые являются произведением мощности в киловаттах и ​​времени работы оборудования в часах. Полезность электроэнергии измеряется электросчетчиком, который регистрирует общую энергию, потребляемую устройствами с питанием. Электрическая мощность определяется уравнением, показанным ниже.

Где В, — напряжение в вольтах, I — ток в амперах, R — сопротивление, обеспечиваемое устройствами с питанием, T — время в секундах, а P — мощность, измеренная в Вт.

Единица электроэнергии

Единица измерения электрической мощности — Ватт.

Если, Таким образом, мощность, потребляемая в электрической цепи, считается равной одному ватту, если через цепь протекает ток в один ампер, когда к ней приложена разность потенциалов в 1 В. Большей единицей электрической мощности является киловатт (кВт), обычно используется в энергосистеме

Виды электроэнергии

Электроэнергия в основном подразделяется на два типа. Это мощность постоянного и переменного тока.

1. Питание постоянного тока

Мощность постоянного тока определяется как произведение напряжения и тока. Его производят топливный элемент, аккумулятор и генератор.

Где P — мощность в ваттах.
В — напряжение в вольтах.
I — ток в амперах.

2. Электропитание переменного тока

Электропитание переменного тока в основном подразделяется на три типа. Это кажущаяся мощность, активная мощность и реальная мощность.

1. Полная мощность — Полная мощность — это бесполезная мощность или мощность холостого хода.Он представлен символом S, а их единица СИ — вольт-ампер.

Где S — полная мощность
В действующее значение — действующее значение напряжения = В пиковое значение √2 в вольтах.
I rms — RMS ток = I пик √2 в усилителе.

2. Активная мощность — Активная мощность (P) — это активная мощность, которая рассеивается в сопротивлении цепи.

Где, P — реальная мощность в ваттах.
В среднеквадратичное значение — Среднеквадратичное значение напряжения = В пик √2 в вольтах.
I rms — RMS ток = I пик √2 в усилителе.
Φ — фазовый угол импеданса между напряжением и током.

3. Реактивная мощность — Мощность, развиваемая в реактивном сопротивлении цепи, называется реактивной мощностью (Q). Он измеряется в реактивных вольт-амперах.

Где, Q — реактивная мощность в ваттах.
В среднеквадратичное значение — Среднеквадратичное значение напряжения = В пиковое значение √2 в вольтах.
I rms — RMS ток = I пик √2 в усилителе.
Φ — фазовый угол импеданса между напряжением и током.

Соотношение между полной, активной и реактивной мощностью показано ниже.

Отношение реальной мощности к полной называется коэффициентом мощности, и его значение находится в диапазоне от 0 до 1.

Мощность

Количественная работа связана с силой, вызывающей смещение. Работа не имеет ничего общего с количеством времени, в течение которого эта сила вызывает смещение. Иногда работа выполняется очень быстро, а иногда — довольно медленно.Например, альпинистке требуется необычно много времени, чтобы поднять свое тело на несколько метров вдоль скалы. С другой стороны, турист (который выберет более легкий путь в гору) может поднять свое тело на несколько метров за короткий промежуток времени. Эти два человека могут выполнять одинаковый объем работы, но путешественник выполняет ее значительно быстрее, чем скалолаз. Величина, связанная со скоростью выполнения определенного объема работы, называется мощностью. У туриста выше номинальной мощности , чем у скалолаза.

Мощность — это скорость выполнения работы. Это соотношение работы / времени. Математически это вычисляется с использованием следующего уравнения.

Мощность = Работа / время

или

P = Вт / т

Стандартная метрическая единица измерения мощности — Вт . Как следует из уравнения мощности, единица мощности эквивалентна единице работы, деленной на единицу времени. Таким образом, ватт эквивалентен джоулям в секунду.По историческим причинам лошадиных сил иногда используется для описания мощности, выдаваемой машиной. Одна лошадиная сила эквивалентна примерно 750 Вт.

Большинство машин спроектировано и построено для работы с объектами. Все машины обычно характеризуются номинальной мощностью. Номинальная мощность указывает скорость, с которой эта машина может работать с другими объектами. Таким образом, мощность машины — это соотношение работы / времени для этой конкретной машины.Автомобильный двигатель — это пример машины, которой задана номинальная мощность. Номинальная мощность относится к тому, насколько быстро автомобиль может разгонять автомобиль. Предположим, что двигатель мощностью 40 лошадиных сил может разогнать автомобиль от 0 миль / час до 60 миль / час за 16 секунд. Если бы это было так, то автомобиль с четырехкратной мощностью в лошадиных силах мог бы выполнять такой же объем работы за четверть времени. То есть 160-сильный двигатель мог разогнать тот же автомобиль с 0 миль / час до 60 миль / час за 4 секунды. Дело в том, что при одинаковом объеме работы мощность и время обратно пропорциональны.Уравнение мощности предполагает, что более мощный двигатель может выполнять такой же объем работы за меньшее время.

Человек — это также машина с номинальной мощностью . Некоторые люди более полны власти, чем другие. То есть некоторые люди способны выполнять тот же объем работы за меньшее время или больше за то же время. Обычная физическая лаборатория включает в себя быстрый подъем по лестнице и использование информации о массе, росте и времени для определения личных способностей ученика.Несмотря на диагональное движение по лестнице, часто предполагается, что горизонтальное движение является постоянным, и вся сила от ступенек используется для подъема ученика вверх с постоянной скоростью. Таким образом, вес ученика равен силе, которая воздействует на ученика, а высота лестницы — это смещение вверх. Предположим, Бен Пумпинирон поднимает свое 80-килограммовое тело по 2,0-метровой лестнице за 1,8 секунды. Если бы это было так, то мы могли бы рассчитать номинальную мощность Бена .Можно предположить, что Бен должен приложить к лестнице нисходящую силу 800 Ньютон, чтобы поднять свое тело. Поступая таким образом, лестница толкала тело Бена вверх с достаточной силой, чтобы поднять его тело вверх по лестнице. Также можно предположить, что угол между силой лестницы на Бена и смещением Бена равен 0 градусов. Используя эти два приближения, можно определить номинальную мощность Бена, как показано ниже.

Номинальная мощность Бена — 871 Вт. Он вполне коня .

Другая формула силы

Выражение для мощности — работа / время. А поскольку выражение для работы — это сила * смещение, выражение для мощности можно переписать как (сила * смещение) / время. Поскольку выражение для скорости — это смещение / время, выражение для мощности можно еще раз переписать как «сила * скорость». Это показано ниже.

Это новое уравнение мощности показывает, что мощная машина одновременно сильна (большая сила) и быстра (большая скорость).Мощный автомобильный двигатель — сильный и быстрый. Мощная сельскохозяйственная техника — прочная и быстрая. Сильный тяжелоатлет силен и быстр. Сильный лайнмен в футбольной команде силен и быстр. Машина , которая достаточно сильна, чтобы приложить большую силу, чтобы вызвать смещение за небольшой промежуток времени (то есть с большой скоростью), является мощной машиной.

Проверьте свое понимание

Используйте свое понимание работы и силы, чтобы ответить на следующие вопросы.По завершении нажмите кнопку, чтобы просмотреть ответы.

1. Два студента-физика, Уилл Н. Эндейбл и Бен Пумпинирон, в зале для тяжелой атлетики. Уилл поднимает 100-фунтовую штангу над головой 10 раз за одну минуту; Бен поднимает 100-фунтовую штангу над головой 10 раз за 10 секунд. Какой студент больше всего работает? ______________ Какой ученик дает больше всего энергии? ______________ Объясните свои ответы.

2.Во время физической лаборатории Джек и Джилл взбежали на холм. Джек вдвое массивнее Джилл; тем не менее, Джилл преодолевает то же расстояние за половину времени. Кто работал больше всего? ______________ Кто доставил больше всего энергии? ______________ Объясните свои ответы.


3. Уставшая белка (масса около 1 кг) отжимается, прикладывая силу, поднимающую ее центр масс на 5 см, чтобы выполнить работу всего на 0,50 Дж.Если уставшая белка проделает всю эту работу за 2 секунды, то определите ее мощность.

4. Выполняя подтягивание , студентка-физик поднимает свое тело весом 42,0 кг на расстояние 0,25 метра за 2 секунды. Какую силу развивают бицепсы ученика?

5.Ежемесячный счет за электроэнергию в вашей семье часто выражается в киловатт-часах. Один киловатт-час — это количество энергии, доставленное потоком 1 киловатт электроэнергии за один час. Используйте коэффициенты преобразования, чтобы показать, сколько джоулей энергии вы получаете, покупая 1 киловатт-час электроэнергии.

6. Эскалатор используется для перемещения 20 пассажиров каждую минуту с первого этажа универмага на второй.Второй этаж расположен на высоте 5,20 метра над первым этажом. Средняя масса пассажира — 54,9 кг. Определите требуемую мощность эскалатора, чтобы переместить это количество пассажиров за это время.

единиц энергии и преобразования

единиц энергии и преобразования

Единицы измерения энергии и преобразования

Деннис Сильверман
U.К. Ирвин, физика и астрономия

Единицы измерения энергии и преобразования
1 Джоуль (Дж) — единица энергии МКС, равная силе в один Ньютон. действующий через один метр.
1 ватт — мощность джоуля энергии в секунду

Мощность = Ток x Напряжение (P = I В)
1 Вт — это мощность тока в 1 ампер, протекающего через 1 вольт.
1 киловатт — это тысяча ватт.
1 киловатт-час — это энергия одного киловатта мощности, протекающая на одного человека. час. (E = P t).
1 киловатт-час (кВтч) = 3,6 x 10 6 Дж = 3,6 миллиона Джоуля

1 калория тепла — это количество, необходимое для получения 1 грамма воды 1 степень По Цельсию.
1 калория (кКал.) = 4,184 Дж
(Калории в рейтинге еды на самом деле являются килокалориями.)

BTU (британская тепловая единица) — это количество тепла, необходимое для повышения температуры. один фунт воды на 1 градус Фаренгейта (F).
1 британская тепловая единица (BTU) = 1055 Дж (механический эквивалент Отношение тепла)
1 БТЕ = 252 кКал. = 1.055 кДж
1 Quad = 10 15 БТЕ (мировое потребление энергии составляет около 300 Квадроциклы в год, США — около 100 квадроциклов в год в 1996 году.)
1 терм = 100000 БТЕ
1000 кВтч = 3,41 миллиона БТЕ
Преобразование мощности
1 лошадиная сила (лс) = 745,7 Вт
Преобразование объема газа в энергию
Одна тысяча кубических футов газа (Mcf) -> 1,027 миллиона БТЕ = 1,083 миллиард J = 301 кВтч
Один терм = 100000 БТЕ = 105,5 МДж = 29,3 кВтч
1 Mcf -> 10,27 термов
Энергосодержание топлива
Каменный уголь 25 миллионов БТЕ / тонна
сырая Масло 5.6 миллионов БТЕ / баррель
Масло 5,78 миллиона БТЕ / баррель = 1700 кВтч / баррель
Бензин 5,6 миллиона БТЕ / баррель (баррель составляет 42 галлона) = 1,33 терм / галлон
Сжиженный природный газ 4,2 миллиона БТЕ / баррель
Натуральный газ 1030 БТЕ / куб. стопа
Дерево 20 миллионов БТЕ / корд
CO2 Загрязнение ископаемым топливом
Фунтов CO2 на миллиард БТЕ энергии ::
угля 208000 фунтов
Нефть 164 000 фунтов
Природный газ 117 000 фунтов

Коэффициенты загрязнения CO2:
Нефть / природный газ = 1.40
Уголь / природный газ = 1,78

фунтов CO2 на 1000 кВтч, при 100% эффективности:
Уголь 709 фунтов
Нефть 559 фунтов
Природный газ 399 фунтов

Как рассчитать электрическую мощность и энергию

Электроэнергия — это скорость выполнения работ. (См. Также: Что такое работа, энергия и мощность?) Электроэнергия — это скорость, с которой электричество работает или дает энергию. В системе СИ единица мощности — ватт, один джоуль в секунду.

Электроэнергия обычно вырабатывается электрическими генераторами, но также может поставляться электрическими батареями. Электроэнергия обычно продается электрическими компаниями в киловатт-часах (3,6 МДж), которые представляют собой произведение мощности в киловаттах на время работы в часах. Электроэнергетические компании измеряют мощность с помощью электросчетчика, который учитывает текущую сумму электроэнергии, доставленной потребителю.

Определение и уравнения для мощности

Электрическая мощность — это скорость выполнения работы, измеряемая в ваттах и ​​обозначаемая буквой P.Термин «мощность» означает «электрическая мощность в ваттах». Электрическая мощность в ваттах, вырабатываемая электрическим током I, состоящим из заряда Q кулонов каждые t секунд, проходящего через разность электрических потенциалов (напряжений) V, составляет:

P = работа, выполненная за единицу времени = VQ / t = (V) (I) или мощность = напряжение x ток или вольт x амперы

где: Q — электрический заряд в кулонах, t — время в секундах, I — электрический ток в амперах, а V — электрический потенциал или напряжение в вольтах

Электроэнергетика

Электрическая энергия = мощность x время.Общее количество используемой электроэнергии зависит от общей мощности, используемой всеми вашими электрическими устройствами, и общего времени, в течение которого они используются в вашем доме.

Электрическая энергия измеряется в киловатт-часах

Энергия = Мощность x Время или Киловатт-часы = Киловатт x Часы

Один киловатт-час равен 1000 ватт энергии, используемой в течение одного часа времени.

Как рассчитать стоимость электроэнергии

Из Con Ed Bill — «Мы измеряем вашу электроэнергию по тому, сколько киловатт-часов ((кВтч) вы используете.Один кВтч будет освещать 100-ваттную лампочку в течение 10 часов ».« В 2015 году среднее годовое потребление электроэнергии для потребителя коммунальных услуг в США составило 10812 киловатт-часов (кВтч), в среднем 901 кВтч в месяц . В Луизиане было самое высокое годовое потребление электроэнергии на уровне 15 435 кВтч на бытового потребителя, а на Гавайях было самое низкое — 6 166 кВтч на бытового потребителя ».

ОБРАЗЕЦ ПРОБЛЕМЫ:

Сколько энергии и мощности потребуется для работы кондиционера мощностью 900 Вт в течение 10 часов подряд?

Решение: Энергия = Мощность x Время = 900 Вт x 10 часов = 9000 Вт-часов = 9 кВтч.

КАК ПОНИМАТЬ СЧЕТ НА ЭЛЕКТРОЭНЕРГИЮ

ДАННЫЕ ИЗ СЧЕТА

г. Нью-Йорка 2017 г.

Многое нужно для понимания того, за что вы платите. Это не только стоимость топлива, но и плата за доставку, а также сборы за различные услуги и налоги.

Чтобы объяснить это, мы используем фактический счет Con Ed для небольшой квартиры в Нью-Йорке, использующий Con Edison.

ЗАРЯДЫ НА ЭЛЕКТРОЭНЕРГИЮ

Из Con Edison:

Электроэнергия, которую вы использовали в течение этого 30-дневного расчетного периода с 03 января 2013 г. по 02 февраля 2017 г.

Мы измеряем вашу электроэнергию по тому, сколько киловатт-часов (кВтч) вы используете.

Один кВт-ч будет светить 100-ваттную лампочку на 10 часов.

02,17 февраля фактическое значение 95175 кВтч

3 января, 17 фактическое значение 94838 кВтч

Таким образом, вы использовали электроэнергию 337 кВтч


ВАШЕ ПОСТАВКА / ПЛАТА — было 337 кВтч при 0,5282 цента / кВтч (это плата за электроэнергию, поставляемую вам Con Ed = 18,83 долларов США

Плата за функцию продавца — плата, связанная с получением кредита на электроэнергию и деятельностью, связанной с сбором, = 1 доллар США.41

GRT и другие налоги = 0,48 доллара США

Общие затраты на поставку = 20,52 долларов США, что составляет 6,1 центов / кВтч.


ВАША ДОСТАВКА

Базовая плата за обслуживание 16,38 долл. США

Это изменение базовой инфраструктуры системы и услуг, связанных с клиентами, включая учет клиентов, снятие показаний счетчиков и обслуживание счетчиков.

Доставка 337 кВтч при 11,0208 ц / кВтч = 37,14 долларов США

Это плата за обслуживание системы, через которую Con ed поставляет вам электроэнергию.

Изменение преимуществ системы при 0,6706 ц / кВтч = 2,26 долл. США

Это возмещает затраты, связанные с деятельностью в области чистой энергии, проводимой научным сотрудником штата Нью-Йорк в области энергетики

Временная надбавка штата Нью-Йорк 0,1246 цента / кВтч = 0,42

Покрывает новые государственные пошлины

GRT и другие доплаты 2,87 $

Итого стоимость доставки 69,5 долл. США


НАЛОГ НА ПРОДАЖУ @ 4.5000%, взимаемый от имени штата Нью-Йорк = 3 доллара США.58

ОБЩАЯ ПЛАТА ЗА ЭЛЕКТРОЭНЕРГИЮ 63,15 $


ОБРАЗЕЦ ВОПРОСА:

Какова стоимость поставки для работы холодильника мощностью 600 Вт в течение 24 часов (при использовании ON) по цене 0,06 цента / кВтч? Примечание. Холодильники не работают постоянно.

Решение: Энергия = Мощность x Время = 600 Вт x 24 часа = 14,4 кВтч x 0,06 цента / кВтч = 864 цента = 8,64 доллара США

Проверьте свой Понимание: .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *