Постоянный ток формулы: Законы постоянного тока – FIZI4KA

Содержание

Постоянный электрический ток. Сила тока. Напряжение. Электрическое сопротивление. Закон Ома для участка электрической цепи

1. Электрическим током называют упорядоченное движение заряженных частиц.

Для того чтобы в проводнике существовал электрический ток, необходимы два условия: наличие свободных заряженных частиц и электрического поля, которое создаёт их направленное движение.

При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.

Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока. В растворе поваренной соли в воде происходит электролитическая диссоциация — процесс разложения молекулы поваренной соли на положительный ион натрия и отрицательный ион хлора.

Если в сосуд с раствором поваренной соли поместить две металлические пластины, соединённые с источником тока (рис. 79), то положительный ион натрия в электрическом поле будет двигаться к пластине, соединенной с отрицательным полюсом источника тока, называемым катодом, а отрицательный ион хлора — с положительным полюсом источника тока, называемым анодом.

Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока но цепи. При внесении пламени в воздушный промежуток между пластинами происходит ионизация газа (рис. 80). При этом от атома «отрываются» электроны и образуется положительный ион. Во время движения электрон может присоединиться к нейтральному атому и образовать отрицательный ион. Положительные ионы движутся к отрицательному электроду, а отрицательные ионы и электроны — к положительному электроду.

2. Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.

В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.

3. Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.

Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться (рис. 81).

Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.

Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.

Это происходит потому, что между электродами существует электрическое поле, в котором ионы (положительно заряженные ионы меди и отрицательно заряженные ионы кислотного остатка) движутся к соответствующим электродам. Достигнув отрицательного электрода, ионы меди получают недостающие электроны, при этом восстанавливается чистая медь.

4. Характеристикой тока в цепи служит величина, называемая силой тока ​\( (I) \)​. Силой тока называют физическую величину, равную отношению заряда ​\( q \)​, проходящего через поперечное сечение проводника за промежуток времени ​\( t \)​, к этому промежутку времени: ​\( I=q/t \)​.

Определение единицы силы тока основано на магнитном действии тока, в частности на взаимодействии параллельных проводников, по которым идёт электрический ток. Такие проводники притягиваются, если ток по ним идёт в одном направлении, и отталкиваются, если направление тока в них противоположное.

За единицу силы тока принимают такую силу тока, при которой отрезки параллельных проводников длиной 1 м, находящиеся на расстоянии 1 м друг от друга, взаимодействуют с силой 2·10

-7 Н.

Эта единица называется ампером (1 А).

Зная формулу силы тока, можно получить единицу электрического заряда: 1 Кл = 1 А · 1 с.

5. Прибор, с помощью которого измеряют силу тока в цепи, называется амперметром. Его работа основана на магнитном действии тока. Основные части амперметра магнит и катушка. При прохождении по катушке электрического тока она в результате взаимодействия с магнитом, поворачивается и поворачивает соединённую с ней стрелку. Чем больше сила тока, проходящего через катушку, тем сильнее она взаимодействует с магнитом, тем больше угол поворота стрелки. Амперметр включается в цепь последовательно с тем прибором, силу тока в котором нужно измерить (рис. 82), и потому он имеет малое внутреннее сопротивление, которое практически не влияет на сопротивление цепи и на силу тока в цепи.

У клемм амперметра стоят знаки «+» и «-», при включении амперметра в цепь клемма со знаком «+» присоединяется к положительному полюсу источника тока, а клемма со знаком «-» к отрицательному полюсу источника тока.

6. Источник тока создаёт электрическое поле, которое приводит в движение электрические заряды. Характеристикой источника тока служит величина, называемая напряжением. Чем оно больше, тем сильнее созданное им поле. Напряжение характеризует работу, которую совершает электрическое поле по перемещению электрического заряда, равного 1 Кл.

Напряжением ​\( U \)​ называют физическую величину, равную отношению работы ​\( (A) \)​ электрического поля по перемещению электрического заряда к заряду ​\( (q) \)​: ​\( U=A/q \)​.

Возможно другое определение понятия напряжения. Если числитель и знаменатель в формуле напряжения умножить на время движения заряда ​\( (t) \)​, то получим: ​\( U=At/qt \)​. В числителе этой дроби стоит мощность тока ​\( (P) \)​, а в знаменателе — сила тока ​\( (I) \)​: ​\( U=P/I \)​, т.е. напряжение — физическая величина, равная отношению мощности электрического тока к силе тока в цепи.

Единица напряжения: ​\( [U]=[A]/[q] \)​; ​\( [U] \)​ = 1 Дж/1 Кл = 1 В (один вольт).

Напряжение измеряют вольтметром. Он имеет такое же устройство, что и амперметр и такой же принцип действия, но он подключается параллельно тому участку цепи, напряжение на котором хотят измерить (рис. 83). Внутреннее сопротивление вольтметра достаточно большое, соответственно проходящий через него ток мал по сравнению с током в цепи.

У клемм вольтметра стоят знаки «+» и «-», при включении вольтметра в цепь клемма со знаком «+» присоединяется к положительному полюсу источника тока, а клемма со знаком «-» к отрицательному полюсу источника тока.

7. Собрав электрическую цепь, состоящую из источника тока, резистора, амперметра, вольтметра, ключа (рис. 83), можно показать, что сила тока ​\( (I) \)​, протекающего через резистор, прямо пропорциональна напряжению ​\( (U) \)​ на его концах: ​\( I\sim U \)​. Отношение напряжения к силе тока ​\( U/I \)​ — есть величина постоянная

. Если заменить резистор, включённый в цепь, другим резистором и повторить опыт, получим тот же результат: сила тока в резисторе прямо пропорциональна напряжению на его концах, а отношение напряжения к силе тока есть величина постоянная. Только в этом случае значение отношения напряжения к силе тока будет отличаться от отношения этих величин в первом опыте. Причиной этого является то, что в цепь включались разные резисторы. Следовательно, существует физическая величина, характеризующая свойства проводника (резистора), по которому течёт электрический ток. Эту величину называют электрическим сопротивлением проводника, или просто сопротивлением. Обозначается сопротивление буквой ​\( R \)​.

Сопротивлением проводника ​\( (R) \)​ называют физическую величину, равную отношению напряжения ​\( (U) \)​ на концах проводника к силе тока ​\( (I) \)​ в нём. ​\( R=U/I \)​.

За единицу сопротивления принимают Ом (1 Ом).

Один Ом — сопротивление такого проводника, в котором сила тока равна 1 А при напряжении на его концах 1 В: 1 Ом = 1 В/1 А.

Причина того, что проводник обладает сопротивлением, заключается в том, что направленному движению электрических зарядов в нём препятствуют ионы кристаллической решетки, совершающие беспорядочное движение. 2}{м} \)​.

Изменяя длину проводника, а следовательно его сопротивление, можно регулировать силу тока в цепи. Прибор, с помощью которого это можно сделать, называется реостатом (рис. 84).

9. Как показано выше, сила тока в проводнике зависит от напряжения на его концах. Если в опыте менять проводники, оставляя напряжение на них неизменным, то можно показать, что при постоянном напряжении на концах проводника сила тока обратно пропорциональна его сопротивлению. Объединив зависимость силы тока от напряжения и его зависимость от сопротивления проводника, можно записать: ​\( I=\frac{U}{R} \)​. Этот закон, установленный экспериментально, называется

законом Ома (для участка цепи): сила тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке приведена схема электрической цепи, состоящей из источника тока, ключа и двух параллельно соединённых резисторов.

Для измерения напряжения на резисторе ​\( R_2 \)​ вольтметр можно включить между точками

1) только Б и В
2) только А и В
3) Б и Г или Б и В
4) А и Г или А и В

2. На рисунке представлена электрическая цепь, состоящая из источника тока, резистора и двух амперметров. Сила тока, показываемая амперметром А1, равна 0,5 А. Амперметр А2 покажет силу тока

1) меньше 0,5 А
2) больше 0,5 А
3) 0,5 А
4) 0 А

3. Ученик исследовал зависимость силы тока в электроплитке от приложенного напряжения и получил следующие данные.

Проанализировав полученные значения, он высказал предположения:

А. Закон Ома справедлив для первых трёх измерений.
Б. Закон Ома справедлив для последних трёх измерений.

Какая(-ие) из высказанных учеником гипотез верна(-ы)?

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

4. На рисунке изображён график зависимости силы тока в проводнике от напряжения на его концах. Чему равно сопротивление проводника?

1) 0,25 Ом
2) 2 Ом
3) 4 Ом
4) 8 Ом

5. На диаграммах изображены значения силы тока и напряжения на концах двух проводников. Сравните сопротивления этих проводников.

1) ​\( R_1=R_2 \)​
2) \( R_1=2R_2 \)​
3) \( R_1=4R_2 \)​
4) \( 4R_1=R_2 \)​

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения мощности тока для двух проводников (1) и (2) одинакового сопротивления. Сравните значения напряжения ​\( U_1 \)​ и ​\( U_2 \)​ на концах этих проводников.

1) ​\( U_2=\sqrt{3}U_1 \)​
2) \( U_1=3U_2 \)
3) \( U_2=9U_1 \)
4) \( U_2=3U_1 \)

7. Необходимо экспериментально обнаружить зависимость электрического сопротивления круглого угольного стержня от его длины. Какую из указанных пар стержней можно использовать для этой цели?

1) А и Г
2) Б и В
3) Б и Г
4) В и Г

8. Два алюминиевых проводника одинаковой длины имеют разную площадь поперечного сечения: площадь поперечного сечения первого проводника 0,5 мм2, а второго проводника 4 мм2. Сопротивление какого из проводников больше и во сколько раз?

1) Сопротивление первого проводника в 64 раза больше, чем второго.
2) Сопротивление первого проводника в 8 раз больше, чем второго.
3) Сопротивление второго проводника в 64 раза больше, чем первого.
4) Сопротивление второго проводника в 8 раз больше, чем первого.

9. В течение 600 с через потребитель электрического тока проходит заряд 12 Кл. Чему равна сила тока в потребителе?

1) 0,02 А
2) 0,2 А
3) 5 А
4) 50 А

10. В таблице приведены результаты экспериментальных измерений площади поперечного сечения ​\( S \)​, длины ​\( L \)​ и электрического сопротивления ​\( R \)​ для трёх проводников, изготовленных из железа или никелина.

На основании проведённых измерений можно утверждать, что электрическое сопротивление проводника

1) зависит от материала проводника
2) не зависит от материала проводника
3) увеличивается при увеличении его длины
4) уменьшается при увеличении его площади поперечного сечения

11. Для изготовления резисторов использовался рулон нихромовой проволоки. Поочередно в цепь (см. рисунок) включали отрезки проволоки длиной 4 м, 8 м и 12 м. Для каждого случая измерялись напряжение и сила тока (см. таблицу).

Какой вывод можно сделать на основании проведённых исследований?

1) сопротивление проводника обратно пропорционально площади его поперечного сечения
2) сопротивление проводника прямо пропорционально его длине
3) сопротивление проводника зависит от силы тока в проводнике
4) сопротивление проводника зависит от напряжения на концах проводника
5) сила тока в проводнике обратно пропорциональна его сопротивлению

12. В справочнике физических свойств различных материалов представлена следующая таблица.

Используя данные таблицы, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При равных размерах проводник из алюминия будет иметь меньшую массу и большее электрическое сопротивление по сравнению с проводником из меди.
2) Проводники из нихрома и латуни при одинаковых размерах будут иметь одинаковые электрические сопротивления.
3) Проводники из константана и никелина при одинаковых размерах будут иметь разные массы.
4) При замене никелиновой спирали электроплитки на нихромовую такого же размера электрическое сопротивление спирали уменьшится.
5) При равной площади поперечного сечения проводник из константана длиной 4 м будет иметь такое же электрическое сопротивление, что и проводник из никелина длиной 5 м.

Часть 2

13. Меняя электрическое напряжение на участке цепи, состоящем из никелинового проводника длиной 5 м, ученик полученные данные измерений силы тока и напряжения записал в таблицу. Чему равна площадь поперечного сечения проводника?

Ответы

Постоянный электрический ток. Сила тока. Напряжение. Электрическое сопротивление. Закон Ома для участка электрической цепи

4. 8 (95%) 4 votes

Электрический ток — Физика — Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Электрический ток. Сила тока. Сопротивление

К оглавлению…

В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны – отрицательно заряженные частицы.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.

Средняя сила тока находится как отношение всего заряда ко всему времени (т.е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):

Если же ток равномерно меняется с течением времени от значения I1 до значения I2, то можно значение среднего тока можно найти как среднеарифметическое крайних значений:

Плотность тока – сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:

При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления – взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника R определяется по формуле:

где: l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества – табличная величина.

Сопротивление проводника зависит и от его температуры:

где: R0 – сопротивление проводника при 0°С, t – температура, выраженная в градусах Цельсия, α – температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.

Диод в цепи постоянного тока

Диод – это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:

Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением. Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи. Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.

 

Закон Ома. Последовательное и параллельное соединение проводников

К оглавлению…

Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.

1. Закономерности последовательного соединения:

Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

2. Закономерности параллельного соединения:

Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Электроизмерительные приборы

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

 

ЭДС. Закон Ома для полной цепи

К оглавлению…

Для существования постоянного тока необходимо наличие в электрической замкнутой цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

Закон Ома для полной (замкнутой) цепи: сила тока в замкнутой цепи равна электродвижущей силе источника, деленной на общее (внутреннее + внешнее) сопротивление цепи:

Сопротивление r – внутреннее (собственное) сопротивление источника тока (зависит от внутреннего строения источника). Сопротивление R – сопротивление нагрузки (внешнее сопротивление цепи).

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

Важно понять и запомнить: ЭДС и внутреннее сопротивление источника тока не меняются, при подключении разных нагрузок.

Если сопротивление нагрузки равно нулю (источник замыкается сам на себя) или много меньше сопротивления источника, то тогда в цепи потечет ток короткого замыкания:

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ε и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик, и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

Несколько источников ЭДС в цепи

Если в цепи присутствует несколько ЭДС подключенных последовательно, то:

1. При правильном (положительный полюс одного источника присоединяется к отрицательному другого) подключении источников общее ЭДС всех источников и их внутреннее сопротивление может быть найдено по формулам:

Например, такое подключение источников осуществляется в пультах дистанционного управления, фотоаппаратах и других бытовых приборах, работающих от нескольких батареек.

2. При неправильном (источники соединяются одинаковыми полюсами) подключении источников их общее ЭДС и сопротивление рассчитывается по формулам:

В обоих случаях общее сопротивление источников увеличивается.

При параллельном подключении имеет смысл соединять источники только c одинаковой ЭДС, иначе источники будут разряжаться друг на друга. Таким образом суммарное ЭДС будет таким же, как и ЭДС каждого источника, то есть при параллельном соединении мы не получим батарею с большим ЭДС. При этом уменьшается внутреннее сопротивление батареи источников, что позволяет получать большую силу тока и мощность в цепи:

В этом и состоит смысл параллельного соединения источников. В любом случае при решении задач сначала надо найти суммарную ЭДС и полное внутреннее сопротивление получившегося источника, а затем записать закон Ома для полной цепи.

 

Работа и мощность тока. Закон Джоуля-Ленца

К оглавлению. ..

Работа A электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в теплоту Q, выделяющееся на проводнике. Эту работу можно рассчитать по одной из формул (с учетом закона Ома все они следуют друг из друга):

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж.Джоулем и Э.Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока A к интервалу времени Δt, за которое эта работа была совершена, поэтому она может быть рассчитана по следующим формулам:

Работа электрического тока в СИ, как обычно, выражается в джоулях (Дж), мощность – в ваттах (Вт).

 

Энергобаланс замкнутой цепи

К оглавлению…

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ε и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. В этом случае полезная мощность или мощность, выделяемая во внешней цепи:

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Мощность потерь или мощность внутри источника тока:

Полная мощность, развиваемая источником тока:

КПД источника тока:

 

Электролиз

К оглавлению…

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением вещества на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.

Закон электролиза был экспериментально установлен английским физиком М.Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе. Итак, масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:

где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

 

Электрический ток в газах и в вакууме

К оглавлению…

Электрический ток в газах

В обычных условиях газы не проводят электрический ток. Это объясняется электрической нейтральностью молекул газов и, следовательно, отсутствием носителей электрических зарядов. Для того чтобы газ стал проводником, от молекул необходимо оторвать один или несколько электронов. Тогда появятся свободные носителя зарядов — электроны и положительные ионы. Этот процесс называется ионизацией газов.

Ионизировать молекулы газа можно внешним воздействием — ионизатором. Ионизаторами может быть: поток света, рентгеновские лучи, поток электронов или α-частиц. Молекулы газа также ионизируются при высокой температуре. Ионизация приводит к возникновению в газах свободных носителей зарядов — электронов, положительных ионов, отрицательных ионов (электрон, объединившийся с нейтральной молекулой).

Если создать в пространстве, занятом ионизированным газом, электрическое поле, то носители электрических зарядов придут в упорядоченное движение – так возникает электрический ток в газах. Если ионизатор перестает действовать, то газ снова становится нейтральным, так как в нем происходит рекомбинация – образование нейтральных атомов ионами и электронами.

Электрический ток в вакууме

Вакуумом называется такая степень разрежения газа, при котором можно пренебречь соударением между его молекулами и считать, что средняя длина свободного пробега превышает линейные размеры сосуда, в котором газ находится.

Электрическим током в вакууме называют проводимость межэлектродного промежутка в состоянии вакуума. Молекул газа при этом столь мало, что процессы их ионизации не могут обеспечить такого числа электронов и ионов, которые необходимы для ионизации. Проводимость межэлектродного промежутка в вакууме может быть обеспечена лишь с помощью заряженных частиц, возникших за счет эмиссионных явлений на электродах.

Постоянный ток Основные формулы:

Сила тока: .

Плотность тока: ,j=qnV.

Закон Ома для однородного участка цепи:

Сопротивление проводника:

Зависимость удельного сопротивления от температуры:

Закон Ома для неоднородного участка цепи:

Сила тока короткого замыкания: .

Закон Ома для замкнутой цепи: .

Работа электрического поля на участке цепи:

Закон Джоуля-Ленца:

Мощность тока: P=I . U .

Полная мощность, выделяемая в цепи: P=I .  .

Первый закон Кирхгофа: .

Второй закон Кирхгофа:

Примеры решения задач

Задача 12. Амперметр, накоротко присоединенный к источнику тока с ЭДС 1,5 В и внутренним сопротивлением 0,2 Ом, показывает силу тока 5 А. Какую силу тока показывает этот амперметр, если его зашунтировать сопротивлением 0,1 Ом?

Дано:

 = 1,5 В

r= 0,2 Ом

I1 = 5 А

Rш = 0,1 Ом

Решение.

Ток в цепи без шунта был равен

Отсюда .

Ток в цепи с зашунтированным амперметром равен

I2 — ?

,

где — сопротивление внешней цепи.

Ответ: I2 = 10 A.

Задача 13. Даны 12 элементов с ЭДС  =1,5В и внутренним сопротивлением r=0,4Ом. При последовательном или параллельном соединении этих элементов в батарею ток внешней цепи, имеющей сопротивление R=0,3 Ом, будет максимальным?

Дано:

n = 12

 = 1,5 В

r= 0,4 Ом

R= 0,3 Ом

Решение.

При последовательном соединении источников тока суммарная ЭДС равна p=n, а результирующее внутреннее сопротивление батареи равно rp= n . r.

Таким образом, ток в цепи при последовательном соединении источников тока равен

Imax — ?

При параллельном соединении одинаковых источников тока суммарная ЭДС будет равна , а результирующее внутреннее сопротивление батареи равно Таким образом, ток в цепи при параллельном соединении источников тока равен

Ответ: I2 > I1 при параллельном соединении.

Задача 14. Электрическая плитка мощностью 1 кВт и нихромовой спиралью предназначена для включения в сеть с напряжением 220 Вт. Сколько метров проволоки диаметром 0,5 мм надо взять для изготовления спирали, если температура нити равна 900оС. Удельное сопротивление нихрома при 0о С — 1мк Ом.м, а температурный коэффициент сопротивления — 4.10—4 К—1.

Дано:

Р = 1 кВт = 103 Вт

U = 220 В

d = 0,5 мм = 0,5.10—3

t = 900о С

po=1мк Ом . м =10—6 Ом . м

= 4 . 10—4 К—1

Решение.

Мощность плитки равна где

—сопротивление нихромовой проволоки. Сопротивление проволоки также равно

—?

где — удельное сопротивление проволоки приt=900oC.

Таким образом, длина нихромовой проволоки, необходимой для изготовления спирали, равна

Ответ: =7м.

Задача 15. Сила тока в проводнике равномерно нарастает от Io= 0 до I = 3A в течение времени t = 10с. Определить заряд q, прошедший в проводнике.

Дано:

Io= 0

I = 3 A

t=10 с

Решение.

Элементарный заряд dq, прошедший в проводнике за время dt, равен dq=I·dt, где I в силу равномерного нарастания может быть выражено формулой I =k t ,

q— ?

где — коэффициент пропорциональности.

Полный заряд, прошедший в проводнике за время t, равен

Ответ: q=15 Кл.

Задача 16. Сила тока в проводнике равномерно нарастает от Io = 0 до некоторого максимального значения в течение времени t=10 с. За это время в проводнике выделилось количество теплоты Q=1 кДж. Определить скорость нарастания тока в проводнике, если сопротивление R его равно 3 Ом.

Дано:

Io= 0

t = 10с

Q = 1кДж

R = 3 Ом.

Решение.

Количество теплоты, выделившееся в проводнике за время t, равно ,I=k·t,

где — скорость нарастания тока в проводнике.

q— ?

Отсюда

Ответ: k = 1 A / c.

Задача 17. Три источника тока с ЭДС 1 = 11 B, 2 =4 B и 3 = 6 B и три реостата с сопротивлениями R1=5 Ом, R2=10 Ом и R3=2 Ом соединены, как показано на рисунке. Определить силы токов I в реостатах. Вынужденное сопротивление источника тока пренебрежимо мало.

Дано:

1 = 11 B

2 =4 B

3 = 6 B

R1=5 Ом

R2=10 Ом

R3=2 Ом

Решение.

I 1 , I 2 , I 3 — ?

Силы токов в разветвленной цепи определяются с помощью законов Кирхгофа. Поскольку в задаче три неизвестных, необходимо составить три уравнения. Перед составлением уравнений следует, во-первых, выбрать произвольно направления токов, текущих через сопротивления, указав их стрелками на чертеже, и, во-вторых, выбрать направление обхода контуров (только для составления уравнений по второму закону Кирхгофа).

При решении данной задачи направления токов выбраны, как показано на рисунке.

Одно из трех необходимых для решения задачи уравнений составляется, исходя из первого, два других — из второго закона Кирхгофа.

По первому закону Кирхгофа для узла В имеем

I 1 + I 2 I 3 = 0.

При составлении уравнений по первому закону Кирхгофа необходимо соблюдать правило знаков: ток, подходящий к узлу, входит в уравнение со знаком плюс; ток, отходящий от узла — со знаком минус.

При составлении уравнений по второму закону необходимо соблюдать следующее правило знаков: а) если ток по направлению совпадает с выбранным направлением обхода контуров, то соответствующее произведение IR входит в уравнение со знаком плюс, в противном случае произведение IR входит в уравнение со знаком минус; б) если ЭДС повышает потенциал в направлении обхода контура, то есть, если при обходе контура приходится идти от минуса к плюсу внутри источника, то соответствующая ЭДС входит в уравнение со знаком плюс, в противном случае — со знаком минус.

По второму закону Кирхгофа имеем соответственно для контуров AR1 BR2 и AR2 BR3 :

I 1 R1I 2 R2 = 1 — 2,

I 2 R2 + I 3 R3 = 2 — 3.

Подставив в уравнения значения сопротивлений и ЭДС, получим систему уравнений:

I 1 + I 2 I 3 = 0 ;

5 I 1  10 I 2 = 7 ;

10 I 2 + 2 I 3 =  2 .

Решив эту систему уравнений, получаем что I1 = 0,8 А, I2 =  0,3 А, I3= 0,5 А.

Знак минус у значения тока I2 свидетельствует о том, что при произвольном выборе направлений токов, указанных на рисунке, направление тока I 2 было указано противоположно истинному.

Ответ: I 1 = 0,8 А, I 2=  0,3 А, I 3 = 0,5А.

8. Постоянный электрический ток Основные формулы

Сила тока:

(если ).

Плотность тока:

, ,

где – площадь поперечного сечения проводника,– средняя скорость упорядоченного движения зарядов в проводнике,– концентрация зарядов,– элементарный заряд.

Зависимость сопротивления от параметров проводника:

,

где – длина проводника,– площадь поперечного сечения проводника,– удельное сопротивление,– удельная проводимость.

Зависимость удельного сопротивления от температуры для металлических проводников:

,

где – температурный коэффициент сопротивления;– удельное сопротивление при,– температура проводника.

Сопротивление системы проводников: при последовательном (а) и параллельном (б) соединениях:

а) , б),

где – сопротивление-го проводника,– число проводников.

Сопротивления, необходимые для расширения пределов измерения приборами силы тока () и напряжения () враз:

, .

Законы Ома:

для однородного участка цепи:

,

для неоднородного участка цепи:

,

для замкнутой цепи:

,

где – напряжение на однородном участке цепи,– разность потенциалов на концах участка цепи,– ЭДС источника,– внутреннее сопротивление источника тока.

В дифференциальной форме:

,

где – плотность тока,– удельная проводимость,–напряжённость поля.

Сила тока короткого замыкания:

.

Работа тока за время :

.

Закон Джоуля-Ленца (количество теплоты, выделяемой при прохождении тока через проводник):

.

Мощность тока, выделяемая в нагрузке (полезная):

.

Полная мощность, выделяемая в цепи:

.

Мощность, теряемая в источнике:

.

Коэффициент полезного действия источника тока:

.

Правила Кирхгофа:

1) – для узлов;

2) – для контуров,

где – алгебраическая сумма сил токов, сходящихся в узле,– алгебраическая сумма ЭДС в контуре.

Примеры решения задач

Задача 1. ЭДС источника тока=6 В. Наибольшая сила тока, которую может дать источник тока,=5А. Какая наибольшая мощностьможет выделиться на подключенном к источнику тока резисторе с переменным сопротивлением? Каким при этом будет КПД источника тока и какая мощностьбудет расходоваться на нагревание самого источника?

Дано:

Решение:

= 6 B;

= 5 A.

Мощность тока на внешнем участке цепи находится по формуле:

, (1)

= ?

=?

=?

где R – сопротивление резистора при условии очень малого сопротивления подводящих ток проводников.

Силу тока I можно найти на основе закона Ома для

замкнутой цепи:

(2)

где R и r – сопротивления внешнего и внутреннего участков цепи соответственно.

Подставив формулу (2) в формулу (1), получим:

. (3)

Из формулы (3) видно, что при постоянных величинах и r мощность является функцией одной переменной – внешнего сопротивления R. Известно, что эта функция имеет максимум при условии R = r. В этом можно убедиться, применив общий метод исследования функций на экстремум с помощью производной.

Следовательно,

. (4)

Таким образом, задача сводится к отысканию сопротивления r внутреннего участка цепи (источника тока). Если учесть, что согласно закону Ома (2) для замкнутой цепи наибольшая сила тока Imax будет при внешнем сопротивлении R = 0 (ток короткого замыкания), то

. (5)

Подставив найденное из (5) значение внутреннего сопротивления r в формулу (4), получим:

.

Мощность тока, выделяемая на внешнем участке цепи, является полезной по отношению к полной мощности источника тока, которая находится по формуле и в нашем случае будет равна

. (6)

КПД источника тока равен отношению полезной мощности, выделяемой на внешнем участке цепи, к полной мощности источника тока:

. (7)

В нашем случае

Мощность, теряемую в источнике тока, можно найти по формуле: .

В нашем случае: .

Ответ: ; ; .

Задача 2. Электрическая цепь состоит из двух источников тока, трех сопротивлений и амперметра (рис.7.1). В этой цепи R1=100 Ом, R2=50 Ом, R3=20 Ом, ЭДС одного из источников тока 1=2 В. Амперметр регистрирует ток I3=50 мА, идущий в направлении, указанном стрелкой. Определите ЭДС второго источника тока 2. Сопротивлением амперметра и внутренним сопротивлением источников тока пренебречь.

Рис.7.1

Указания: Для расчета разветвленных цепей применяются правила Кирхгофа:

а) – первое правило Кирхгофа;

б) — второе правило.

На основании этих правил можно составить уравнения, необходимые для определения искомых величин (силы тока, сопротивления и ЭДС). Применяя правила Кирхгофа, следует соблюдать следующие указания:

1. Перед составлением уравнений произвольно выбрать: а) направления токов (если они не заданы по условию задачи) и указать их стрелками на чертеже; б) направления обхода контуров (например, по часовой стрелке).

2. При составлении уравнений по первому правилу Кирхгофа считать токи, подходящие к узлу, положительными, а токи, отходящие от узла, отрицательными. Число уравнений, составляемых по первому правилу Кирхгофа, должно быть на единицу меньше числа узлов, содержащихся в цепи.

3. При составлении уравнений по второму правилу Кирхгофа надо считать, что а) произведение силы тока на сопротивление участка контура IкRк входит в уравнение со знаком “плюс”, если направление тока в данном участке совпадает с выбранным направлением обхода контура, в противном случае произведение IкRк входит в уравнение со знаком “минус”, б) ЭДС входит в уравнение со знаком “плюс”, если она повышает потенциал в направлении обхода контура, т. е. если при обходе приходится идти от минуса к плюсу внутри источника тока; в противном случае ЭДС входит в уравнение со знаком “минус”. Число уравнений, составленных по второму правилу Кирхгофа должно быть равно числу независимых контуров, имеющихся в цепи. Для составления уравнений первый контур можно выбирать произвольно. Все последующие контуры следует выбрать таким образом, чтобы в каждый новый контур входила хотя бы одна ветвь цепи, не участвовавшая ни в одном из ранее использованных контуров. Если при решении уравнений, составленных указанным выше способом, получены отрицательные значения силы тока или сопротивления, то это означает, что ток через данное сопротивление в действительности течет в направлении, противоположном произвольно выбранному. При этом числовые значения силы тока будут правильными. Однако в этом случае неверным окажется вычисленное значение сопротивления. Тогда необходимо, изменив на чертеже направление тока в сопротивлении, составить новую систему уравнений и, решив ее, определить искомое сопротивление.

Р

Дано:

R1 = 100 Ом;

R2 = 50 Ом;

R3 = 20 Ом;

1= 2 B;

I з= 50 мА.

2 = ?

ешение:

Выберем направления токов, как они показаны на рисунке, и условимся обходить контуры по часовой стрелке. По первому правилу Кирхгофа для узла F имеем:

I1I2I3 = 0. (1)

П

2 =?

о второму правилу Кирхгофа имеем для контураACDFA: – I1R1I2R2 = – 1 , или после умножения обеих частей равенства на – 1:

I1R1 + I2R2 = 1 . (2)

Соответственно для контура AFGHA найдем:

I1R1 + I3R3 = 2 . (3)

После подстановки известных числовых значений в формулы (1), (2) и (3) получим: I1I2–0,05=0, 50I1+25I2=1, 100I+0,05·20=2 .

Перенеся в этих уравнениях неизвестные величины в левые части, а известные – в правые, получим систему 3 уравнений с тремя неизвестными:

Выразим из первого уравнения системы I2 и подставим во второе:

.

Подставляя I1 в третье уравнение, получаем =4 В.

Ответ: =4 В.

Мощность в цепи постоянного тока

Здравствуйте! Эту статью можно считать началом знакомства с электричеством. Напряжение, ток, сопротивление – это три главные величины, на которых построены основные законы электротехники и эти величины связаны между собой еще одной – мощностью. А чтобы было проще знакомиться с электротехникой, мы будем рассматривать мощность в цепи постоянного тока. Дело в том, что при расчетах в цепях переменного тока появляется довольно много условий. Впрочем, обо всём по порядку и вы сейчас сами с этим разберётесь.

Для удобства я сразу напишу международные обозначения этих четырёх величин:

U – напряжение (В, вольт)

I – ток (А, ампер)

R – сопротивление (Ом, ом)

P – мощность (Вт, ватт – не надо путать с вольтом, который обозначается только одной буквой В)

Для начала абстрактный пример, чтобы проще было понимать термины, которые я сейчас буду использовать. Допустим, есть магазин товаров (условно это можно представить, как напряжение), есть деньги (условно это будет ток), есть совесть, которая не позволяет вам тратить много или наоборот, шепчет, чтобы вы крупно потратились (это можно считать сопротивлением) и есть купленные товары или продукты, которые вы несёте домой (это мощность). Собственно, на этом примере можно объяснить многие законы, связанные с электрическим током. Все обозначенные величины связаны между собой законом Ома, который гласит, что сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению цепи, а именно:

В абстрактном примере – чем больше магазин (напряжение) и чем меньше вам шепчет совесть (сопротивление), тем больше вы тратите денег (сила тока), а когда вы несёте купленный товар домой, вы совершаете работу (мощность). Мощность в цепи постоянного тока это и есть работа, совершаемая электричеством.  Мощность это произведение тока на напряжение, а если вместо тока или напряжения подставить соответствующие значения, то можно получить мнемоническую табличку:

Как видите, мощность в цепи постоянного тока это довольно простое понятие, если немного вдуматься в материал. По сути, это всего две формулы с заменой значений. Как это выглядит:

Если теперь в формуле мощности подставить место значения тока формулу тока, то получим следующее:

 Именно таким образом и получилось 12 формул на основе закона Ома, которые вы видите в мнемонической табличке. Что такое мощность в цепях постоянного тока мы более или менее разобрались, но есть ещё один момент.

Баланс мощностей в цепи постоянного тока.

Собственно, это просто проверка правильности расчетов электрической цепи. Возвращаясь к нашему абстрактному примеру это выглядит так: вы купили товары, забрали их на кассе, отошли от кассы и вам показалось, что ваши пакеты должны быть больше или меньше, чем получились. Тогда вы берёте чек и начинаете сравнивать товар в чеке и товар в наличии. Если товары в чеке и товары в руках совпали, значит всё в порядке. Если мы обратимся к определению, то баланс мощностей – сумма мощностей потребляемых приемниками, равна сумме мощностей отдаваемых источниками.

Как это использовать на практике? Допустим, у нас есть задача, которую нужно решить:

Поскольку решение задачи не является целью этой статьи, я дам уже готовые ответы. 

Теперь надо проверить правильно ли были посчитаны токи в задаче. Ток в цепи равен току , следовательно, мощность источника питания (Е1хI1) должна быть равна сумме мощностей сопротивлений

Что мы и получаем с учетом потерь при округлениях.

Таким образом, баланс мощностей в электрической цепи постоянного тока — это ничто иное, как проверка самого себя, своих расчётов.

Как видите, мощность в цепи постоянного тока посчитать довольно легко. Гораздо больше сложностей возникнет, если ток будет переменный.  Другими словами, на примере магазина это выглядит так:

Постоянный ток – от входа до выхода прямая линия и вы спокойно идете от начала и до конца без каких-либо приключений.

Переменный ток – магазин представляет из себя зигзаг и вам приходится делать лишние движения.

Поэтому в переменном токе мощность считать немного сложнее, но это уже тема совсем другой статьи.

Поделиться ссылкой:

Похожее

2. Постоянный электрический ток. Электричество и магнетизм. Физика. Курс лекций

2. 1. Плотность тока носителей заряда разных знаков

2.2. ЭДС. Источник тока. Напряжение

2.3. Законы Ома в интегральной форме

2.3.1. Закон Ома в дифференциальной форме

2.4. Закон Джоуля-Ленца

2.5. Законы Кирхгофа

2.6. Эмиссия электронов с поверхности

2.6.1. Работа выхода

2.6.2. Способы выбивания (отрыва) электронов с поверхности

2.6.3. Электрический ток в вакууме

2.7. Заряженная частица в плоском конденсаторе

Электрический ток — направленное движение зарядов.

Направление тока — направление движения «+» зарядов. Так исторически принято, хотя основными носителями заряда в подавляющем большинстве случаев являются электроны, т.е. отрицательно заряженные частицы.

Условия возникновения электрического тока:

1. наличие свободных носителей электрических зарядов. 2. электрическое поле (внешнее).

Характеристики электрического поля:

Сила тока — количество заряда, протекающего по проводнику в единицу времени. Для постоянного тока:

.

Если количество заряда меняется со временем, то:

.

Плотность тока — численно равна величине тока, протекающего через единичную площадку, расположенную перпендикулярно направлению движения заряда.

.

Если сила тока величина скалярная, то плотность тока – вектор, направленный вдоль нормали к поверхности, через которую протекает заряд. Если поперечное сечение проводника, по которому протекает ток, неоднородно, тогда плотность тока в разных частях проводника выражается дифференцированием, т.е. величина силы тока есть поток векторов j, через поперечное сечение проводника (см. т.Гаусса).

— самостоятельного наименования не имеет.

Электропроводность — физическая величина, количественно характеризующая способность тела пропускать электрический ток под действием электрического поля (- электропроводность).

Величина, обратная электропроводности, называется сопротивлением.

.

Сопротивление протеканию тока есть величина, характеризующаяся структурными и химическими особенностями среды, по которой протекает заряд. Структурные особенности — взаимное расположение атомов в проводнике, химическая особенность — разного рода молекулярная связь атомов и молекул вещества.

Эти особенности, как правило табличные, и называются удельным сопротивлением — сопротивлением проводника протеканию электрического тока телом с геометрическим размером ~1м3:

где ρ — удельное сопротивление, — длина, S — площадь поперечного сечения физического тела.

Поскольку сопротивление определяется особенностями строения проводника, то температура окружающей среды, искажающая состояние структуры химических связей атомов вещества, оказывает решающее влияние на это сопротивление. Из общих соображений можно сказать, что повышение температуры повышает сопротивление.

Rt=Ro+(1+a t) где Rо- сопротивление при комнатной температуре, t — температура в градусах Цельсия, α — температурный коэффициент сопротивления.

Изменение температуры на десятки градусов изменяет сопротивление на несколько процентов, на сотни градусов — на десятки процентов. (α ~ 10-3 К-1).

2.1. Плотность тока носителей заряда разных знаков

В общем случае для разных типов носителей заряда: где ρ = n· e, n — удельная концентрация зарядов, e — заряд электрона ( e=1,6·10-19 Кл ), ρ — объемная плотность заряда. — количество заряда в данном проводнике длиной l и поперечным сечением S.

Аналогичное математическое рассмотрение можно провести, как для “+” так и для “-” зарядов. Предполагается, что “+” и “-” заряды при протекании не взаимодействуют друг с другом, тогда общие потоки зарядов движутся навстречу друг другу и результирующий поток равен:

, если . Здесь скорости положительных (+) и отрицательных (-) зарядов, которые, как правило, не одинаковы. Итак, плотность потока зарядов противоположного знака численно равна сумме плотностей потоков отдельных зарядов

2.2. ЭДС. Источник тока. Напряжение

Чтобы в проводнике протекал постоянный электрический ток: 1) подают на один конец заряды, а на другом их снимают; и 2) нужны некоторые силы, чтобы заряд перемещался, т.е. нужны силы неэлектрического происхождения, их называют сторонние силы.

Сторонние силы не должны быть электрическими, а должны быть химическими, ядерными, механическими и т. д. для совершения работы по перемещению заряда по участку цепи. Участок цепи, в который включается источник сторонних сил обозначается двумя перпендикулярными линиями: тонкая длинная — источник «+» зарядов, толстая короткая — источник «-» .

Устройство, в котором возникают сторонние силы, называются источником тока. Если потенциалы φ1, φ2 в точках 1 и 2 создаются так же электрическими силами, тогда полная сила, вынуждающая заряды двигаться, F=Fстор+FK , а работа по перемещению заряда из точки (1) в точку (2) А12=Fr, если ток протекает в цепи постоянный:

А12=Fr=Fстор · r+FK· r =Eстор·qr+Eкул·qr

Введем понятие силовой характеристики сторонних сил, заставляющих заряды q двигаться, такое как, напряженность поля сторонних сил, тогда:

Fстор =Eстор·q

Зная связь между напряженностью и разностью потенциалов, можем записать, что:

Тогда полная работа:

А12=Eстор·qr + (φ12 )·q.

Разделив это уравнение на величину переносимого заряда q, получим: .

Это напряжение, получаемое на концах участка цепи 1-2, содержащего сторонние силы. Согласно определению силовой характеристики сторонних сил можно записать:

есть электродвижущая сила источника сторонних сил.

ЭДС (e) — электродвижущая сила источника сторонних сил; тогда выражение напряжения на концах участка цепи, содержащего сторонние силы, численно определяется с “+” , если э.д.с. помогает протеканию тока; и с “-” , если э.д.с. препятствует протеканию тока.

2.3. Законы Ома в интегральной форме

Закон Ома в интегральной форме подразумевает, что рассматривается полный ток, протекающий в цепи и величина тока со временем не меняется. Очевидно, что количество заряда, протекающее по проводнику, обратно пропорционально сопротивлению проводника. Количество заряда протекающее в проводнике, прямо пропорционально напряженности или разности потенциалов, создающих внешнее электрическое поле.

1) — закон Ома для участка цепи, не содержащего э.д.с.

Суммарное сопротивление проводников и элементов цепи без э.д.с. обозначается на схеме.

2) Если участок цепи включает в себя э.д.с, то собственное сопротивление источника тока выделяется и обозначается r.

Тогда закон Ома для участка цепи, содержащей э.д.с., будет иметь вид:

.

3) Если замкнутый участок цепи, содержит э.д.с., тогда φ1 = φ2, и получаем:

— закон Ома для замкнутого участка цепи, содержащего э.д.с.

В целом участок цепи, содержащей множество э.д.с. и разных деталей представлен законом Ома в виде:

.

Если при напряжении на концах участка цепи в 1В по цепи протекает ток в 1А, то говорят, что сопротивление цепи равно одному Ому.

Из закона Ома следует:

.

2.3.1. Закон Ома в дифференциальной форме

Сечение проводника или элементов цепи, как правило, неоднородно, и сопротивляемость в разных участках цепи протеканию тока также различная. Тогда разбивают участки цепи на элементы (дифференцируют) и определяют закон Ома в каждом отдельном участке.

— закон Ома, тогда для каждого участка цепи сечением ∆S и длиной ∆l можно записать закон Ома как: .

Учитывая, что для участка цепи

и , получим .

Это закон Ома в дифференциальной форме. Зная, что удельная электропроводность σ и удельное сопротивление ρ связаны, как:

, где

σ — удельная электропроводность,

ρ — удельная сопротивление,

— закон Ома в дифференциальной форме.

2.4. Закон Джоуля-Ленца

В интегральной форме

Закон Джоуля-Ленца касается закона сохранения энергии; если считать, что система электрической цепи замкнутая, то работа по перемещению заряда в проводнике, если сам проводник не перемещается в пространстве, полностью преобразуется в тепловую энергию Q на участке (1-2).

Учитывая, что q=I· t получаем:

Q=IU· t (1) (2)

(3)

Вид формулы для Q определяется условием задачи по определению выделившегося тепла. Формулы (1), (2), (3) есть закон Джоуля-Ленца в интегральной форме (определение полного тепла, выделившегося в цепи за все время протекания тока).

Тепловая мощность тока.

Для определения количества теплоты, выделившегося в единицу времени, вводят понятие тепловой мощности тока:

.

Единицей мощности тока считают 1Вт=1Дж/1с.

В дифференциальной форме

Если электрическая цепь состоит из элементов различного сопротивления и геометрии, то цепь разбивают на отдельные участки и определяют закон Джоуля-Ленца для каждого участка. Последовательно расписывая

Из закона Ома в дифференциальной форме следует:

, т. к.

Количество тепла, выделяемое в единице объема проводника за единицу времени равно квадрату плотности тока, умноженному на ρ, или квадрату напряженности электрического поля, деленному на ρ. Это закон Джоуля-Ленца в дифференциальной форме:

.

2.5. Законы Кирхгофа

I Закон Кирхгофа — закон токов (для узлов цепей).

В участке электрических цепей очень часто содержатся узлы, в которых сходятся множество элементов, проводящих ток.

Если цепь работающая, то по разным участкам будут протекать различные токи. По закону сохранения заряда, как материального объекта, можно предположить, что количество заряда, приходящего в узел, должно быть численно равно количеству заряда, выходящего из узла:

разделив на t получаем:

, т.е. по определению

Окончательно имеем:

Сумма электрических токов, сходящихся в узле работающих цепей, всегда равна нулю.

II Закон Кирхгофа — закон напряжений (закон замкнутых цепей).

Величина электрического тока в последовательных цепях есть величина постоянная и по закону сохранения заряда , а по закону Ома на каждом участке:

. Сложим левые и правые части уравнений:

.

Окончательно получаем .

В любом замкнутом контуре сумма падений напряжений на всех участках цепи равна алгебраической сумме э.д.с., включенных в цепь.

2.6. Эмиссия (испускание) электронов с поверхности

Так как любое вещество имеет в своем объеме свободные электроны, то любое внешнее электрическое воздействие на вещество может привести к отрыву электронов с поверхности вещества (эмиссия).

Итак, для того, чтобы удалить электрон с поверхности вещества, требуется совершить работу. Принципиально свободные электроны могут испускаться поверхностями любых веществ, где есть граница раздела (воздух-вода, дерево-вакуум).

Но наибольшее количество испускаемых электронов наблюдается у металлов в связи с наибольшим количеством свободных электронов у этого класса веществ. Эмиссия электронов характеризуется работой выхода — минимальной энергией, которую необходимо затратить для удаления электрона с поверхности твердого или жидкого вещества в вакуум.

2.6.1. Работа выхода

Энергетический разрыв между энергиями электронов в атоме и энергиями электронов в свободном состоянии (в кристалле) называется энергией отрыва электрона от атома. Значит энергетическое состояние свободного электрона больше, чем энергия электрона в атоме. Точно также для отрыва свободного электрона с поверхности вещества требуется совершить работу. Значит, энергетическое состояние электрона вне вещества выше, чем энергия электрона в кристалле.

Для чистых веществ работа выхода зависит только от особенностей атома вещества и взаимосвязей атомов между собой.

Для разных веществ Авых не превышает нескольких эВ, например:

Металл Pt W Mo Fe Mg Na
Авых (эВ) 5,29 4,5 4,27 4,36 3,45 2,27

2.6.2. Способы выбивания (отрыва) электронов с поверхности

Фотоэлектронная эмиссия — выбивание электронов с поверхности под действием электромагнитного излучения (свет — это часть диапазона электромагнитных волн).

И — источник электромагнитных волн (света).

а) окошко для света закрыто, тока нет, т.е. I=0;

б) окошко для света открыто, ток есть, то есть I≠0, т.к. свет падает на поверхность электрода, выбивает электроны, которые и создают ток между анодом и катодом.

Вторичная электронная эмиссия — испускание электронов с поверхности вещества под действием бомбардировки внешних электронов.

Если энергия внешних электронов достаточна для совершения работы выхода (отрыва) электронов с поверхности, то общий поток электронов между анодом и катодом возрастает.

Это устройство называют электронным умножителем.

Автоэлектронная эмиссия — вырывание электронов с поверхности вещества под действием внешнего электрического поля (холодная эмиссия).

Острие катода является концентратором электрического поля. При повышении напряжения между электродами возникает ситуация, когда энергия электрического поля превышает Авых электрона с поверхности.

Задавая напряжение .

Если — условие автоэлектронной эмиссии.

Термоэлектронная эмиссия — явление вырывания электрона с поверхности вещества под действием тепла. При этом тепло или энергия, подводимая к поверхности вещества, превышает работу выхода Q = I2· Rt Aвых. Это явление используется в работе электронно-лучевых трубок.

2.6.3. Электрический ток в вакууме

Электрод, на который подается “+” потенциал, называется анод, а “-” потенциал — катод. Эти электроды помещены в замкнутую вакуумированную среду, а все устройство называют вакуумным диодом.

Пропуская по катоду регулируемый электрический ток по закону Джоуля-Ленца мы вызываем его нагрев. В результате нагрева с поверхности катода испускаются термоэлектроны. Под действием электрического поля между катодом и анодом электроны летят на анод, цепь замыкается, приборы фиксируют наличие тока.

Анализ зависимости тока от напряжения называется вольтамперной характеристикой. ВАХ вакуумного диода имеет сложный характер насыщения.

Проанализируем характерные точки:

1) При отсутствии напряжения между анодом и катодом, электроны вылетают с катода хаотично и часть электронов может попасть на анод; эта величина тока очень мала, но физически имеет место.

2) При увеличении напряжения между анодом и катодом электроны, вылетающие с катода, вытягиваются электрическим полем к аноду и величина тока возрастает; зависимость тока от напряжения на этом участке происходит по закону Богуславского — Ленгмюра (закон 3/2): .

3) участок называется током насыщения; при дальнейшем увеличении напряжения между анодом и катодом наступает момент, когда все электроны, вылетающие с катода, вытягиваются электрическим полем на анод, и дальнейшее увеличение напряжения не приводит к увеличению тока, т. к. количество электронов, вылетающих с катода, ограничено.

4) для того, чтобы полностью подавить анодный ток, необходимо между электродами подать обратное напряжение, и величина напряжения, при котором анодный ток равен 0, называется Uзап — запирающим напряжением.

Поскольку электроны, вылетающие с поверхности, как правило, обладают кинетической энергией, то по данным точки (4) по закону сохранения энергии можно рассчитать скорость вылета электронов, если запирающее напряжение — несколько вольт:

Это среднее значение скорости электронов, летящих от катода к аноду. Величину тока насыщения вакуумного диода можно изменять, изменив нагрев катода, т.е. T3> T2> T1 и, соответственно, изменяется количество электронов, вылетающих с поверхности, как следствие, изменяется Iнас3> Iнас2> Iнас1 .

Зависимость тока насыщения от температуры — закон Риичардсона-Дэшмана и имеет вид:

2. 7. Заряженная частица в плоском конденсаторе

Рассмотрим два случая поведения заряженной частицы в конденсаторе.

а) частица движется перпендикулярно пластинам.

Напишем уравнение для отдельного электрона. По закону сохранения энергии работа по переносу заряда от пластины до пластины:

.

б) частица движется параллельно пластинам.

Также рассмотрим действие поля конденсатора на электрон. По 2-му закону Ньютона сила Кулона вызывает ускорение в направлении, перпендикулярном пластинам, и отклоняет электрон к “+” пластине:

;

Зная, ;

Разложим скорость электрона на две составляющие: параллельную и перпендикулярную пластинам. — параллельна пластинам. Эта скорость не меняется, т.к. вдоль пластин нет силы, действующей на электрон. Перпендикулярная составляющая — , (если электрон влетел в конденсатор параллельно пластинам, ), определится в середине между обкладками как:

.

Тогда путь, пройденный электроном в направлении, перпендикулярном пластинам:

Тогда время пролета электрона в конденсаторе параллельно пластинам:

В результате этого анализа можно сказать, что электрон может выйти из конденсатора, если , а если , то электрон ударится об электрод, т.е. время пролета расстояния меньше времени, затраченного на прохождение пути .

Лучшее значение микросхемы постоянного тока для светодиодов — Отличные предложения на микросхему постоянного тока для светодиодов от глобальной микросхемы постоянного тока для продавцов светодиодов

Отличные новости !!! Вы находитесь в нужном месте, чтобы приобрести микросхему постоянного тока для светодиода. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта лучшая микросхема постоянного тока для светодиодов в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что у вас есть постоянный ток для светодиодов на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не знаете, как использовать постоянный ток для светодиода и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, мы думаем, вы согласитесь, что вы получите ic constant current ic for led по самой выгодной цене в Интернете.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Схема постоянного тока для высокомощных светодиодов

В статье описана простая схема драйвера постоянного постоянного тока для светодиодов, которая доступна для простой работы любого конкретного предпочтительного высокомощного светодиода.

Описанная здесь универсальная схема ограничителя тока высокомощных светодиодов может быть объединена с любым грубым источником постоянного тока, чтобы получить отличную защиту от перегрузки по току для подключенных мощных светодиодов.

Почему ограничение тока жизненно важно для светодиодов

Мы понимаем, что светодиоды — это очень экономичные устройства, которые могут генерировать потрясающую подсветку при относительно низком потреблении, несмотря на это, эти продукты очень чувствительны, в частности к теплу и току, что является дополнительными рекомендациями и влияют на эффективность светодиода.

В частности, для светодиодов высокой мощности, которые могут выделять значительное количество тепла, указанные выше ограничения становятся существенными проблемами. Если светодиод работает с более высоким током, он обычно сильно нагревается и повреждается, в то время как, с другой стороны, если отвод тепла не регулируется, светодиод начинает потреблять больше тока, пока не выйдет из строя.

На этом блоге мы, конечно же, проанализировали пару адаптируемых функциональных ИС, например LM317, LM338, LM196 и т. Д., Которые обычно связаны с множеством отличных функций регулирования мощности.

LM317 идеально подходит для управления токами до 1,5 ампер, LM338 допускает оптимальное значение 5 ампер, в то время как LM196 предназначен для выработки до 10 ампер.

Ниже мы используем эти устройства для настоящего ограничивающего применения для светодиодов в большинстве простейших возможных методов:

Первая схема, перечисленная ниже, сама по себе проста, с использованием только одного определенного резистора, ИС может быть настроена как точный регулятор или ограничитель тока.

На рисунке показан регулируемый резистор для установки ограничения тока, с другой стороны, R1 можно восстановить с помощью установленного резистора, определив его по следующей формуле:

R1 = Vref / ток

или R1 = 1.25 / ток.

Существующие могут быть разными для разных светодиодов, что позволяет вычислить, изолировав оптимальное прямое напряжение от его мощности, например, для светодиода мощностью 1 Вт ток может быть 1 / 3,3 = 0,3 ампера или 300 мА, ток для других Светодиоды можно рассчитать аналогичным образом.

Приведенная выше цифра, вероятно, соответствует максимальному значению 1,5 А, для больших диапазонов тока ИС можно в основном восстановить с помощью LM338 или LM196 в соответствии со спецификациями светодиодов.

Производство существующих регулируемых светодиодных ламп.

Вышеупомянутая схема может быть очень эффективно полезна для создания цепей светодиодных трубок с регулируемым током.

Общий пример показан ниже, который может быть очень легко изменен в соответствии с потребностями и характеристиками светодиодов.



Последовательный резистор, связанный с тремя светодиодами, измеряется по следующей формуле:

R = (напряжение питания — общее прямое напряжение светодиода) / ток светодиода

R = (12 — 3,3 + 3,3 + 3,3) / 3 ампера

R = (12 — 9.9) / 3

R = 0,7 Ом

R Вт = V x A = (12-9,9) x 3 = 2,1 x 3 = 6,3 Вт

электрический ток | Формула и определение

Электрический ток , любое движение носителей электрического заряда, таких как субатомные заряженные частицы (например, электроны с отрицательным зарядом, протоны с положительным зарядом), ионы (атомы, потерявшие или получившие один или несколько электронов), или дырки (недостаток электронов, который можно рассматривать как положительные частицы).

Подробнее по этой теме

электромагнетизм: принцип сохранения заряда

Электрический ток — это мера потока заряда, например, заряда, протекающего по проводу.Размер текущего …

Электрический ток в проводе, носителями заряда которого являются электроны, является мерой количества заряда, проходящего через любую точку провода за единицу времени. В переменном токе движение электрических зарядов периодически меняется на противоположное; в постоянном токе это не так. Во многих контекстах направление тока в электрических цепях принимается за направление потока положительного заряда, направление, противоположное фактическому дрейфу электронов. При таком определении ток называется обычным током.

Узнайте, почему низкое сопротивление меди делает ее отличным проводником электрических токов.

Взаимосвязь между током и сопротивлением в электрической цепи.

Encyclopædia Britannica, Inc. Посмотреть все видео для этой статьи

Ток обычно обозначается символом I . Закон Ома связывает ток, протекающий по проводнику, с напряжением В и сопротивлением R ; то есть В = I R .Альтернативная формулировка закона Ома: I = V / R .

Ток в газах и жидкостях обычно состоит из потока положительных ионов в одном направлении вместе с потоком отрицательных ионов в противоположном направлении. Для обработки общего эффекта тока его направление обычно принимается за направление положительного носителя заряда. Ток отрицательного заряда, движущийся в противоположном направлении, эквивалентен положительному заряду той же величины, движущемуся в обычном направлении, и должен быть включен как вклад в общий ток.Ток в полупроводниках состоит из движения дырок в обычном направлении и электронов в противоположном направлении.

Сэкономьте 50% на подписке Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сегодня

Существуют токи многих других видов, такие как пучки протонов, позитронов или заряженных пионов и мюонов в ускорителях частиц.

Электрический ток создает сопутствующее магнитное поле, как в электромагнитах. Когда электрический ток течет во внешнем магнитном поле, он испытывает магнитную силу, как в электродвигателях.Потери тепла или энергия, рассеиваемая электрическим током в проводнике, пропорциональна квадрату тока.

магнитное поле, создаваемое электрическим током

Магнитное поле, создаваемое небольшим отрезком провода с электрическим током и .

Предоставлено Департаментом физики и астрономии Университета штата Мичиган

Распространенной единицей электрического тока является ампер, который определяется как поток заряда в один кулон в секунду, или 6.2 × 10 18 электронов в секунду. Единицы тока сантиметр – грамм – секунда — это электростатическая единица заряда (esu) в секунду. Один ампер равен 3 × 10 9 esu в секунду.

Коммерческие линии электропередач обеспечивают ток около 100 ампер в обычном доме; 60-ваттная лампочка потребляет около 0,5 ампер тока, а однокомнатный кондиционер — около 15 ампер. (Подробнее об электрическом токе, см. электричество: Постоянный электрический ток и электричество: Переменные электрические токи.)

Постоянная Планка | Что такое, история, формула, для чего это нужно, значение, важность

Физика

Постоянная Планка — одна из фундаментальных физических констант , предложенная Максом Планком в 1900 году для объяснения излучения абсолютно черного тела. Облучаемая энергия не может принимать никаких значений, а может принимать только целые множественные значения кванта энергии. Постоянная Планка связывает значение энергии с частотой излучения: E = hf .Работы Планка положили начало квантовой физике: свет (и все формы излучения) излучается, передается или поглощается дискретными количествами энергии, «квантами» энергии.

Что такое постоянная Планка?

Это квантовая физическая константа , которая позволяет нам определить количество энергии, соответствующее кванту , когда он используется для умножения частоты излучения. Своим названием он обязан немецкому физику Максу Планку, родившемуся в 1858 году.

История постоянной Планка

Можно сказать, что Макс Планк открыл константу , которая носит его фамилию в 1900 , принудительно, потому что в то время считалось, что обмен энергией между веществом и излучением осуществляется непрерывно, а эксперименты доказали, что напротив.

Вечером 7 октября 1900 года Макс Планк и его коллега Генрих Рубенс обсуждают измерения последнего вокруг излучения черного тела (черное тело полностью поглощает все электромагнитное излучение), одной из самых сложных проблем того времени.В ту же ночь Планк эмпирически находит закон, описывающий поведение черного тела, наблюдаемый Рубенсом.

Две недели спустя Планк и Рубенс представляют свою работу в Берлинском университете. Затем, 14 декабря того же года, на заседании Немецкого общества физиков , Планк выдвигает гипотезу, которая привела его к этому закону: количественное определение энергии. Там он объясняет, что излучение, испускаемое черным телом, ведет себя так, как если бы оно состояло из «пакетов» энергий, значение которых было бы ε = hν, где он видит частоту излучения, а h — постоянная, известная сегодня как планковская величина. постоянный.

Вот как Planck решает проблему черного тела, поставленную физиком Густавом Кирхгофом в 1859 г. , который изучал поведение тел в тепловом равновесии с окружающим их излучением.

Наконец, стоит отметить, что в 1918 , немецкий физик получил Нобелевскую премию за свои решающие открытия, открывшие путь квантовой механике. В самом деле, постоянная Планка, которая связывает энергию частицы с ее длиной волны, составляет фундаментальную величину квантовой механики.

Для чего нужна постоянная Планка?

Постоянная Планка используется для описания явлений количественной оценки, которые происходят с частицами , и из которых определенные физические свойства принимают только несколько значений из фиксированных значений вместо непрерывного набора возможных значений. Например, энергия частицы связана с ее частотой следующим образом:

Эти условия количественной оценки встречаются во всей квантовой механике.

Значение

Физик Макс Планк внес большой вклад в квантовую теорию, открыв значение константы, которая будет носить его имя и выражать минимальный порог энергии, который может быть измерен в частице.

Значение этой постоянной: h = 6,63. 10 -34 джоулей в секунду .

Формула постоянной Планка

Формула, разработанная Максом Планком: E = h · f , в которой:

  • E = энергия частоты;
  • ч = постоянная Планка;
  • f = частота волны.

Позже физик назвал эти величины квантовыми.

Важность

Постоянная Планка привносит разрыв в описание элементарных явлений, которое составляет основу квантовой физики .

Таким образом, важность открытия Планка заключается не в формальной операции или его математических способностях. В действительности, трансцендентности его предложения основывается прежде всего на революционной интерпретации физического смысла постоянной h .

С самого начала Планк приписывал константе название «элементарный квант действия», потому что он обладает размерами действия (энергия, умноженная на время), и потому, что он вмешивается только несколькими целыми.Таким образом, Планк ввел идею гранулированной композиции, когда все физики думали, что царит непрерывность.

В заключение можно понять, что , благодаря формуле Планка, энергия излучения может быть измерена не только в единицах энергии, но также в единицах длины и частоты .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *