Подача обратка отопление: где проходят, разница температур между ними, давление на радиаторах

Содержание

где проходят, разница температур между ними, давление на радиаторах

От того, насколько эффективно налажена работа системы отопления в доме, будет зависеть комфорт семьи в зимний период. Если батареи нагреваются плохо, необходимо устранить неисправность, а для этого важно знать, как устроено отопление в целом.

Водяной обогрев пространства представляет собой источник тепла и теплоноситель, который разносится по батареям. Подача и обратка присутствует в одно- и двухтрубной системах. Во второй, чёткого распределения нет, трубу условно принято делить пополам.

Особенности подачи в системе отопления

Подача тепла идёт сразу от котла, жидкость при этом разносится по батареям от основного элемента — котла (или же центральной системы). Она характерна для однотрубной системы. Если её усовершенствовать, то возможна врезка труб ещё и на обратку.

Фото 1. Схема отопления для частного двухэтажного дома с указанием труб подачи и обратки.

Где проходит обратка

Если говорить кратко, то схема обогрева состоит из

нескольких важных элементов: отопительный котёл, батареи и расширительный бак. Чтобы тепло поступало по радиаторам, необходим теплоноситель: вода или антифриз. При грамотном построении схемы, теплоноситель нагревается в котле, поднимается по трубам, увеличивая свой объём, а все излишки при этом попадают в расширительный бак.

Исходя из того, что батареи наполнены жидкостью, горячая вода вытесняет холодную, та, в свою очередь, попадает еще раз в котёл для последующего нагрева. Постепенно градус воды увеличивается и достигает нужной температуры. Циркуляция теплоносителя при этом может быть естественной или гравитационной, осуществляемой при помощи насосов.

Исходя из этого, обраткой можно считать теплоноситель, который прошёл весь контур, отдавая тепло, и уже охлаждённый снова попал в котёл для последующего нагрева.

Отличия между ними

Разница между описанными понятиями состоит в следующем:

  • Подача представляет собой теплоноситель, который идёт по радиаторам от источника тепла.
  • Обратка — жидкость, которая прошла всю схему, и остыв снова попала к источнику тепла для последующего нагрева. Следовательно, происходит на выходе.
  • Отличие в температуре: обратка холоднее.
  • Отличие в установке. Водовод, который прикреплён к верхней части батареи, является подачей. То, что крепится к низу — обратка.

Важно! Необходимо соблюдать некоторые советы. Вся система должна быть полностью заполнена водой или антифризом. Поддерживать скорость движения жидкости, её циркуляцию и давление не менее важно.

Разница температур на радиаторах

Разница температур должна составлять 30 °C. При этом на ощупь батареи будут примерно одинаковыми. Важно следить, чтобы перепад этих значений не был слишком большим.

Фото 2. Схема отопления для 6 радиаторов: указаны изменения температуры подачи и обратки на каждом из них.

Полезное видео

В видео рассматривается вопрос: где лучше поставить циркуляционный насос, на подаче или обратке?

Итоги сравнения

Подводя итоги, становится понятно, что однотрубная система разводки с обраткой имеет наибольшую перспективу, особенно для многоэтажных домов. Простота монтажа, низкая стоимость и небольшое количество коммуникаций всё-таки имеют преимущество перед двухтрубной с подачей.

Однако не стоит забывать, что с помощью двухтрубной схемы, возможно регулировать температуру нагрева для каждого прибора по отдельности.

Температура обратки отопления | Блог инженера теплоэнергетика

          Доброго времени суток, уважаемые читатели! Если вы хотя бы немного сталкивались с эксплуатацией и обслуживанием систем центрального отопления, то вам наверняка приходилось слышать про такое понятие, как перегрев обратки. Что же это такое, почему возникает, и как с ним бороться?

         Перегрев обратки – это когда температура воды на выходе с дома превышает температуру, которая должна быть по температурному графику. То есть по графику допустим, в обратке должно быть  63

°С, по факту 67 °С. Причем перегрев по температурному графику надо смотреть не по температуре наружного воздуха, так как тепловая сеть инерционна, а температура в течение дня меняется. Сравнивать нужно по температуре t1, то есть температуре в подаче.

       Смотрим вначале показания термометра по подаче t1, затем  в температурный график, какая должна быть соответствующая температура t2. Затем смотрим по термометру фактическую t2 и сравниваем с t2 по графику. Хорошо, когда t2 совпадает или чуть меньше t2 по температурному графику. И плохо если по факту температура обратка завышена против графика. Согласно пункту 9.2.1 «Правил технической эксплуатации тепловых энергоустановок» “среднесуточная температура обратной сетевой воды не должна превышать заданную температурным графиком температуру более чем на 5%”.

       Сейчас ушлые энергетики включают в обязательном порядке этот пункт из Правил в договоры теплоснабжения. То есть если перегрев у вас выскочит за пределы 5% , то вам дополнительно насчитают денежный штраф за превышение обратки. Если перегрев укладывается в эти 5%, штрафа не будет, но лучше вам все равно перегрев устранить. Идеальный вариант – когда обратка у вас в графике, или немного ниже.

          Причин перегрева в основном две. Первая – переток через различные перемычки между подачей и обраткой, то есть из подачи в обратку. В основном это происходит либо через линию горячего водоснабжения, либо через вентиляцию. Поэтому если у вас обнаружился перегрев, в первую очередь посмотрите, нет ли перетока из подачи в обратку. Но по факту такое происходит нечасто.

         Основная и главная причина перегрева, в 95 % случаев – это повышенный расход сетевой воды.

То есть сетевой воды при перегреве через ваш теплоузел проходит больше, чем вам нужно на самом деле. Почему же энергетики так борются с перегревом? Повышенный расход сетевой воды свидетельствует о не расчетном расходе теплоносителя, то есть расход завышен и больше расчетного. А это – завышенная циркуляция, при которой происходит рост расхода электроэнергии на привод сетевых насосов на теплоисточнике. Электроэнергия стоит денег, поэтому завышенная обратка – прямые убытки для теплоснабжающей организации.

         Приходилось слышать мнение,  что завышенная обратка выгодна потребителю. Дескать, если вернуть с дома Т2 с перегревом от графика, то теплопотребление станет меньше, т.к. разница Т1-Т2 уменьшится. Однако это не так. Количество тепла Qпотр., Гкал, считается в общем случае так. Количество тепла по подаче Q 1 = G1* ( t1- tх.в.)*0,001 где G1 – это расход воды в тоннах в час; т/час; t1 – температура воды по подаче ; tх.в. – температура холодной воды, которая подготавливается и нагревается на теплоисточнике, обычно tх.в. принимается  5 °С.

       Количество тепла по обратке считается аналогично: Q 1  = G2*(t2- tх.в.)*0,001. Расход потребленного тепла определяется по формуле: Qпотр = Q1— Q2= G1*( t1- tх.в.)*0,001- G2*(t2- tх.в.)*0,001. Вот и получается, что хоть разница t1- t2 и уменьшается в случае перегрева, но повышенный расход G формуле в итоге перевешивает, и количество тепла Qпотр все же получается больше. Вообщем вывод такой: для потребителя перегрев по обратке означает перетоп всего здания и повышение количества потребленного тепла и потребителю однозначно экономически невыгоден.

         Как устранить перегрев? Для этого в ИТП (теплоузле) на подаче, до элеватора необходимо отрегулировать регулятор давления (либо регулятор расхода), смотря что установлено. Что такое регулятор давления РД, я писал здесь. Регулируя через РД давление, и смотря по показанием теплосчетчика, либо термометров и манометров, можно выставить необходимое давление, при котором расход не будет превышать расчетный.

Лучше конечно, пусть это сделают специалисты. Если  теплоузел у автоматизирован современной автоматикой, то при нормальном режиме работы оборудования перегрев невозможен в принципе.

      Совсем недавно я написал и выпустил книгу, полностью посвященную  обратке отопления, перегреву по обратке. Она называется «Все,что вы хотели знать про перегрев обратки!».

Вот содержание этой книги:

1. Введение

2. Что такое обратка отопления?

3. Из за чего возникает перегрев обратки?

4. Штрафные санкции со стороны теплоснабжающей организации за перегрев обратки.

5. Как отрегулировать систему отопления и устранить перегрев по обратному трубопроводу?

6. Заключение

Просмотреть ее можно по ссылке ниже:

Все, что вы хотели знать про перегрев обратки!

         Буду рад комментариям к статье.


Как найти подающий и обратный трубопровод отопления квартиры

  • Главная
  • »
  • Статьи
  • »
  • Как найти подающий и обратный трубопровод отопления квартиры

Зачем нужно?

Каждому собственнику квартиры важно знать, где расположен ввод централизованного отопления. Потому как, если на каком либо из участков трубопровода или радиаторах образуется течь теплоносителя, необходимо оперативно среагировать и перекрыть отсекающие краны на вводе отопления в квартиру, во избежание затопления своей квартиры и квартир соседей под Вами. Так как, давление в системах централизованного отопление многоквартирных домов составляет 3-5 Бар (атмосфер), то малейшая протечка быстро превратится в полноводную реку кипятка (температура системы отопления варьируется от 40 до 90 °С).

В зависимости от особенностей внутридомовой системы отопления ввод тепловой энергии в квартиру может находиться:

— непосредственно в самой квартире, в таком случае остается только выяснить где подача, а где обратка.

— в нише отопления находящейся в коридоре на этаже где расположена квартира;

— в нише отопления находящейся в коридоре на 1 этаж ниже расположения квартиры;

— в нише отопления находящейся в коридоре на 1 этаж выше расположения квартиры;

Случаи 2-4 далее мы рассмотрим более подробно.

Если каждая из квартир имеет свою собственную нишу отопления, расположенную возле/под/над входом в квартиру, то остается только выяснить где подача, а где обратка.

В случаях, когда мы имеем дело с совмещенными нишами отопления (1 ниша на весь этаж, 1 ниша на каждые 2-4 квартиры) на первый взгляд легкая задача может оказаться серьезным испытанием. Все решает случай. Возможны следующие варианты:

1. Нумерация – доверяй, но проверяй!

Если строители или эксплуатационные организации пронумеровали отводы от гребенки системы отопления, есть вероятность что номер Вашей квартиры и номер отвода совпадут, и процесс поиска придет к своему логическому завершению. Однако, как было сказано в известной пословице “Доверяй, но проверяй!“. Как это сделать расписано ниже в этой статье.

2. Трубы не пересекаются.

Зачастую строители руководствуются этим правилом при разводке отопления. Опираясь на него, можно провести визуальный анализ направления прокладки трубопроводов и найти свои трубы. Однако, в нашей стране возможно всё и нарушенными могут быть как писанные и неписанные правила так и любая элементарная логика и рациональность. Так что, если хочешь в чем-то точно убедиться проверь сам.

3. Не соответствие планов и чертежей суровой реальности.

Вооружившись поэтажной схемой разводки тепловых сетей и инженерными чертежами также можно попасть впросак. По тому, как зачастую существует большая разница между проектом и реальным исполнением она начинается с банального желания застройщика сэкономить средства и заканчивается самоуправством строителей. Так что, если хочешь в чем-то точно убедиться проверь сам.

4. Клинические случаи.

Иногда можно столкнуться просто с клиническими случаями общей халатности и безответственности, когда, в процессе исследований выявляется что Ваши входящая и исходящая трубырасположены не симметрично одна под одной, а находятся на разных полюсах гребенки. То есть, к примеру, Ваша входящая труба на гребенке – 1-я слева, а исходящая – 2-я справа.

Перейдем непосредственно к самим методам поиска нужным нам трубопроводов в нише отопления расположенной на этаже размещения квартиры/над ним/ под ним.

Все методы поиска труб системы отопления, которые ведут к вашему жилищу можно разделить на два периода:

1) Осенне-весенний период работы централизованной системы отопления.

В данный период наиболее актуальными являются следующие методы:

  • Проверка давлением.

Это наиболее быстрый метод решения поставленной задачи, но руки придется замарать. Суть его заключается в следующем: парное перекрытие отсекающих кранов в нише отопления (на входящем и исходящем трубопроводах) и открывание крана Маевского (для спуска воздуха) на одном из радиаторов своей квартиры. Если были перекрыты отсекающие краны, ведущие к Вашей квартире ручеек воды, вытекающий из крана Маевского в течение 1 минуты иссякнет, по причине отсутствия давления в Вашем контуре системы отопления.

В ином случае нужно последовательно перекрывать другие отсекающие краны вплоть до получения результата.

  • Проверка временем … и холодом.

В том случае, если Вы опасаетесь устроить потоп вселенского масштаба, Вам подойдет такой метод. Он более времяёмкий, но не придется марать руки и риски что-либо сломать существенно уменьшаются. Также как и в методе “Проверка давлением” необходимо осуществить парное перекрытие отсекающих кранов в нише отопления (на входящем и исходящем трубопроводах) и ожидать пока радиаторы системы отопления остынут. Если, в течение 15-25 минут радиаторы еще остаются горячими, значит, Вы перекрыли отопление кому то из Ваших соседей. В таком случае нужно последовательно перекрывать другие отсекающие краны вплоть до получения результата.

  • Проверка с помощью тепловизора.

Самый затратный, надежный и полезный из методов. Особенно, если Вы планируете делать ремонт и перекладывать трубы системы отопления в своей квартире. Тепловизионное исследование позволит по тепловому излучению в полу, определить какие из труб расположенных в нише отопления идут к Вашему жилищу, проверить само наличие и качество изоляционных материалов также найти слабые места и неплотности в ограждающих конструкциях квартиры. 

2) Весенне-осенний период отсутствия отопления.

 

В указанный период процесс многократно усложняется по причине отсутствия отопления и вышеуказанные методы не работают.

  • Проверка давлением.

Такая проверка представляется возможной только при наличии в системе воды. Не смотря на пункты 6.2.57 и 9.2.11 Правил эксплуатации электроустановок (ПУЭ) прямо запрещающих слив теплоносителя из системы отопления в неотопительный период (для защиты от внутренней коррозии системы и отопительных приборов), в подавляющем большинстве домов по невыясненным причинам воду сливают и проверка давлением не представляется возможной.

  • Продувка воздуха. Любителям проходить алкотесты посвящается

Многим автомобилистам знаком, представленный метод дуть в трубочку полиции для прохождения теста на содержание алкоголя в крови.

Данный метод возможно использовать только когда в системе отопления отсутствует теплоноситель и при в наличии в нише отопления, где происходит разводка по этажу, шаровых кранов для спуска воды. В тех случаях, когда такие краны отсутствуют, настоятельно не рекомендуем использовать такой метод.

Суть заключается в следующем: парное перекрытие отсекающих кранов в нише отопления (на входящем и исходящем трубопроводах), открывание крана для спуска воды и крана Маевского (для спуска воздуха) на одном из радиаторов своей квартиры. Один человек дует (дуть можно как ртом так и пылесосом или иными бытовыми приборами) в открытый кран для спуска воды в нише отопления, в то время как второй стоит возле радиатора и слушает, есть ли от этого эффект (шипение выходящего воздуха из радиатора).

В ином случае нужно последовательно перекрывать другие отсекающие краны вплоть до получения результата.

  • Обратится к сантехнику или инженеру

Если нет времени проводить самостоятельные исследования всегда возможно обратится, к тем, кто отвечает за теплоснабжение Вашего дома – местным сантехникам или инженерам. Они обязаны знать, как поэтажно разводится в вашем доме система отопления, и какие из труб проложены к Вашему жилищу. Однако, есть возможность, что при постройке дома строители могли, что то перепутать или действовавши исходя из других причин развести отопление по Вашему этажу совершенно другим образом чем в остальном доме.

  • Попросить балансодержателя дома предоставить Вам поэтажную схему разводки тепловых сетей.

Если в Вашей жизни выражение “Что написано пером, не вырубишь топором” имеет весомое значение, можно обратиться к балансодержателю дома с просьбой предоставить Вам план поэтажной разводки отопления на этаже размещения Вашей квартиры. На Вашем пути могут возникнуть следующие препятствия: у балансодержателя могут отсутствовать запрошенные Вами документы по множеству возможных причин – они были утеряны балансодержателем, их не передал застройщик, их не было у самого застройщика, и т.д.

Как и в предыдущем методе, существует риск несоответствия планов и чертежей реальному положению вещей. Потому быть в чем то убежденным можно лишь лично это проверив.

Правильное подключение радиаторов

Проверка правильного подключения радиаторов при опрессовке системы отопления

Правильное подключение радиаторов отопления означает их правильную работу. Это легко проверить в процессе опрессовки системы отопления с использованием горячего теплоносителя. Опрессовка, это финальный этап установки системы отопления, проверка правильности монтажа всех ее компонентов. Результат определяется с помощью тактильных тепловых рецепторов кожи. Дотрагиваясь до каждой батареи отопления, убеждаются в том, что она нагрета. Последовательно проверяют, равномерно ли нагреты все батареи в доме. При наличии пирометра, инфракрасного дистанционного термометра, можно использовать его. Он оказывается в особенности полезен для проверки равномерности нагревания отдельных секций радиаторов.

Обычно в системе применяют не термостаты, а более дешевый вариант регулирования температуры батарей: краны. Сантехники часто используют слово краны как профессионализм, с ударением на последнем слоге, кранЫ. Краны позволяют регулировать температуру отдельных радиаторов посредством изменения проточного сечения для отдельных радиаторов и веток системы отопления. Опытные сантехники устанавливают краны таким образом, чтобы использовать их также для продавливания воздушных пробок в отоплении в процессе опрессовки системы. Это касается как промежуточных кранов, так и воздушников, кранов Маевского или спускных кранов. Некоторые сантехники предпочитают устанавливать вместо кранов Маевского небольшие спускные краны, которые служат дольше и не «примерзают».

Если отдельные радиаторы не греются, либо не греются целые ветки системы отопления, содержащие несколько радиаторов, это как раз свидетельствует чаще всего о наличии воздушных пробок. Как убрать, выгнать, удалить воздушную пробку? Для этого иногда приходится временно отключать отдельные ветки, чтобы подать максимум давления в «неправильную ветку». В закрытой системе отопления с принудительной циркуляцией убрать воздушные пробки проще.

Самые распространенные ошибки подключения радиаторов отопления

Самой неприятной, но, к сожалению, достаточно распространенной ошибкой подключения радиаторов является обратное подключение радиаторов, неправильная схема подключения радиаторов. Подача, приток теплоносителя, воды, должна всегда, во всех способах подключения, быть сверху, насколько это возможно. А обратка, отток охлажденной воды, должен быть снизу. Если подключают ошибочно, наоборот, подача снизу, а обратка сверху, теплоотдача радиатора может снижаться более чем в два раза. Естественно, что результат такого неправильного подключения легко определяется в процессе опрессовки отопления.

 

Неправильное, обратное подключение радиаторов

Бесспорно, обратное подключение радиаторов является грубейшей ошибкой. Причиной может быть то, что сантехник или, что бывает чаще, мастер-универсал не может правильно определить направление движения теплоносителя в системе отопления, идентифицировать, где подача, а где обратка. Другой причиной может быть незнание базовых принципов и схем подключения радиаторов.

Второй по значимости причиной неправильного подключения радиаторов является проблема удаления воздушных пробок. Эта проблема тесно связана с уклоном труб отопления. Кратко эту проблему можно обозначить так:

— уклон подачи должен быть отрицательным или выпуклым с воздушником (или напорным баком в открытой системе) на самой высокой точке;

— уклон обратки должен быть также отрицательным или вогнутым, желательно, хотя и не всегда возможно, расположить в самой нижней точке кран для спуска теплоносителя из системы отопления.

Равномерность нагрева, как показатель правильного подключения радиаторов

В любом радиаторе отопления отдельные секции греются неравномерно, по-разному. Также каждая отдельная секция радиатора нагревается неравномерно. Вверху она более теплая, а снизу холоднее. Но эта разница должна быть невелика. Опытный сантехник сразу определит, является ли неравномерность нагрева секций или каждой отдельной секции признаком неправильного подключения радиаторов, или эта разница находится в пределах нормы, и подключение радиаторов выполнено правильно.

Следует отметить, что у чугунных батарей отопления коэффициент теплопередачи заметно ниже, чем у алюминия. Это выражается в том, что секции чугунных батарей нагреваются более равномерно, чем секции биметаллических и алюминиевых радиаторов. Это не является признаком ошибки, чаще всего радиаторы подключены правильно.

Неравномерное нагревание каждой секции радиатора, когда вверху она горячая, а внизу слишком холодная, может свидетельствовать об обратном подключении радиатора отопления, либо о том, что нижний проток забит осадками. Различное нагревание отдельных секций: обычно ближние к трубе отопления 1-2-3 секции греются, а остальные остаются холодными, также свидетельствует об обратном подключении.

Либо подобный симптом может означать, что использовано боковое подключение, и напора теплоносителя, его скорости, не хватает для того, чтобы вода проходила через дальние секции. Подобная проблема решается изменением бокового подключения на диагональное подключение радиаторов, либо добавлением удлинителя протока жидкости. Последний вариант используется для того, чтобы не менять дизайн установки радиатора.


Большая разница температуры между подачей и обраткой

Оптимальная разница температуры между подачей и обраткой. Изменения в конструкции обогрева


Постепенно температура теплоносителя увеличивается до необходимой, нагревая радиаторы.

Циркуляция жидкости может быть естественной, называемой гравитационной, и принудительной – с помощью насоса.Обратка – это теплоноситель, который, пройдя через все отопительные приборы, входящие в контур, отдает свое тепло и, охлажденный, поступает снова в котел для очередного подогрева. Батареи можно подключить тремя способами:

  • 2. Диагональное подключение.
  • 3. Боковое подключение.
  • 1. Нижнее подключение.

При первом способе подвод теплоносителя и отвод обратки осуществляется в нижней части батареи.

Подача и обратка в системе отопления

Двухтрубная система более продумана – параллельно подключены две трубы (подача и обратка).

Для того, чтобы продлить срок службы котла, систему отопления стараются изначально продумать так, чтобы «роса» не выпадала, т.е. стараются снизить разницу температур между двумя трубами. Чаще всего, этого добиваются включением бойлера горячего водоснабжения в систему отопления или подогревом теплоносителя обратки.

Бойлер устанавливают рядом с котлом.

Оптимальная разница температуры между подачей и обраткой.

Нормы и оптимальные значения температуры теплоносителя

При нагреве свыше 90 °С начинают разлагаться пыль и лакокрасочное покрытие.

По этим причинам санитарные нормы запрещают осуществлять больший нагрев.

Для расчета оптимальных показателей могут быть использованы специальные графики и таблицы, в которых определены нормы в зависимости от сезона:

  1. При -40 °С за окном для всех приборов отопления ставят максимально допустимые значения. На подаче это – от 95 до 105 °С, а на обратке – 70 °С.
  2. При среднем показателе за окном 0 °С подача для радиаторов с различной разводкой устанавливается на уровне от 40 до 45 °С, а температура обратки – от 35 до 38 °С;
  3. При -20 °С на подачу осуществляется нагрев от 67 до 77 °С, а норма обратки при этом должна быть от 53 до 55 °С;

h3_2 Автономное отопление помогает избегать многих проблем, которые возникают с централизованной сетью, а оптимальная температура теплоносителя может регулироваться в соответствии к сезону.

Оптимальная разница температуры между подачей и обраткой. Защита котла от холодной обратки

При нагреве свыше 90 °С начинают разлагаться пыль и лакокрасочное покрытие.

По этим причинам санитарные нормы запрещают осуществлять больший нагрев. Для расчета оптимальных показателей могут быть использованы специальные графики и таблицы, в которых определены нормы в зависимости от сезона:

  1. При -40 °С за окном для всех приборов отопления ставят максимально допустимые значения. На подаче это – от 95 до 105 °С, а на обратке – 70 °С.
  2. При -20 °С на подачу осуществляется нагрев от 67 до 77 °С, а норма обратки при этом должна быть от 53 до 55 °С;
  3. При среднем показателе за окном 0 °С подача для радиаторов с различной разводкой устанавливается на уровне от 40 до 45 °С, а температура обратки – от 35 до 38 °С;

h3_2 Автономное отопление помогает избегать многих проблем, которые возникают с централизованной сетью, а оптимальная температура теплоносителя может регулироваться в соответствии к сезону.

Норматив разницы температуры в подаче и обратке.

В чем разница между подачей и обраткой отопления

Также должна быть установлена по правилам максимальная температура в системе отопления во избежание дальнейших неисправностей. Радиаторы к системе отопления подключают одним из трех способов: нижним, боковым или диагональным. Также нижнее подключение еще называют по-разному: « », седельное.

По такой схеме обратка и подвод устанавливаются в нижней части батареи.

В большинстве случаев ее применяют, когда трубы проложены под плинтусом либо под поверхностью пола.

Подачу воды в качестве теплового носителя осуществляют в верхней части, а обратка подключается снизу, чтобы температура обратки в системе отопления считалась равнозначной.

Температура обратки в системе отопления.

В чем разница между подачей и обраткой отопления

Подача носителя тепла регулируется вводными задвижками, после которых вода попадает в грязевики, а оттуда раздается по стоякам, а с них подаётся в батареи и радиаторы, обогревающие жильё. Количество задвижек коррелирует с количеством стояков. При выполнении ремонтных работ в отдельно взятой квартире существует возможность отключения одной вертикали, а не всего дома.Отработавшая жидкость частично уходит по обратной трубе, а частично подаётся в сеть горячего водоснабжения.Воду для обогревательной конфигурации готовят на ТЭЦ или в котельной.

Нормы температуры воды в системе отопления прописаны в строительных правилах: компонент должен быть разогрет до 130-150 °С.Подачи рассчитывается с учетом параметров наружного воздуха.

Так, для региона Южный Урал принимается к расчету минус 32 градуса.Чтобы жидкость не закипела, её надо в сеть подавать под давлением 6-10 кгс.

Но это теория. Фактически большинство

Как понизить температуру обратки в системе отопления. В чем разница между подачей и обраткой отопления

Подача носителя тепла регулируется вводными задвижками, после которых вода попадает в грязевики, а оттуда раздается по стоякам, а с них подаётся в батареи и радиаторы, обогревающие жильё.Количество задвижек коррелирует с количеством стояков.

При выполнении ремонтных работ в отдельно взятой квартире существует возможность отключения одной вертикали, а не всего дома.Отработавшая жидкость частично уходит по обратной трубе, а частично подаётся в сеть горячего водоснабжения.Воду для обогревательной конфигурации готовят на ТЭЦ или в котельной. Нормы температуры воды в системе отопления прописаны в строительных правилах: компонент должен быть разогрет до 130-150 °С.Подачи рассчитывается с учетом параметров наружного воздуха.

Так, для региона Южный Урал принимается к расчету минус 32 градуса.Чтобы жидкость не закипела, её надо в сеть подавать под давлением 6-10 кгс.

Но это теория. Фактически большинство

Часто задаваемые вопросы

При образовании нагара ухудшается теплопередача и повышается температура дымовых газов.

Если при той же вырабатываемой мощности котла температура дымовых газов увеличилась, значит необходимо уменьшить время между чистками. По окончании отопительного сезона перед полным выключением котла рекомендуется с пульта включить чистку теплообменника в ручном режиме.Генератор выбирается в зависимости от типа циркуляционного насоса: если насос однофазный, то и генератор можно однофазный.

Допустимая разница температур между подачей и обраткой.

Обратка батареи отопления холодная – устройство, причины, способы устранения

Так же имеют высокую безопасность эксплуатации, продуктивность и оптимальное использование всего оборудования в целом. Затем теплоноситель, то есть вода или антифриз, пройдя по всем имеющимся радиаторам, теряет свою температуру и подается обратно для нагрева.

Самая незамысловатая структура отопления представляет собой нагреватель, две магистрали, расширительный бак и набор радиаторов.

Сантехнический вопрос. точнее отопительный. Для знающих. :)) Какая, именно по вашему мнению, лучше разница температур между подачей и обраткой?
Говорим про индивидуальные системы отопления.
10 или 20 градусов.
Понятно, что при 10-ти ументшается расход энергии, расходуемой котлом на нагрев.. вроде экономия.. Но так же при этиом увеличивается подача насоса, а значит снижается напор, и как следствие уменьшается производительность (фактически мощность) насоса.
При 20-ти значительно уменьшается подача, а соответственно увеличивается напор, что ведет к увеличению производительности насоса и системы, но ведет к бОльшим затратам энергии на котле на нагрев.

Так вот, что по вашему мнению все же предпочтительней, насос большей производительности, но меньше затрат на нагрев теплоносителя, или насос меньшей производительности, но больше затрат на нагрев?

Золотую середину тут не придумать, так что о ней не говорим. :)))
О золотой середине не говорим. 8 лет Еще раз. Ни о каких датчиках не говорим.. . Это совсем другая тема.. . И уточню.. . я не ломаю голову.. . Мне интересно мнение дргух по этому вопросу.. . Дополнен 8 лет назад

Надёжность и производительность отопительной системы зависит от эффективной работы всех частей, входящих в неё.

К ним относятся: котёл для подогрева теплоносителя, определённым образом подсоединённые к нему и между собой радиаторы, расширительный бак, циркуляционный насос, запорная и регулирующая арматура, трубопровод необходимого диаметра.

Создание высокоэффективной системы отопления возможно, благодаря специальным знаниям и опыту в этой сфере деятельности. Немаловажную роль в рабочем процессе отопления помещения играет трубопровод обратки.

Обратка в системе отопления, что это такое

Обратка представляет собой часть трубопровода контура отопления, осуществляющая передачу охлаждённого теплоносителя, после его прохождения по системе через подключённые радиаторы, в котёл для повышения температуры. Теплоносителем в основном является вода, иногда антифриз.

Фото 1. Схема отопления с использованием твердотопливного котла. Обратка обозначена синим цветом.

Виды отопительных схем

Для многоэтажных зданий часто применяют однотрубную прямую систему разводки. Она не имеет чёткого разделения труб на подвод жидкости в радиаторы и обратку, поэтому полный контур условно делят на две равные части. Стояк, выходящий из котла, называют подача, а трубы, выходящие из последнего радиатора — обраткой. Преимущества этой схемы:

  • экономия времени и материальных затрат;
  • удобство и простота монтажных работ;
  • эстетичный вид;
  • отсутствие стояка обратки и последовательное расположение радиаторов (теплоноситель подаётся на 1-й, затем 2-й, 3-й и так далее).

Для однотрубной системы распространена вертикальная разводка с вертикальным контуром и подводом тепла сверху.

При двухтрубной системе разводки подразумевается установка двух замкнутых, параллельно подключённых, контуров, один из них обеспечивает функцию подвода теплоносителя к отопительному прибору (радиатору), второй — функцию его отвода (обратка).

Радиаторы подключаются несколькими способами:

  • Нижний (или седельный, серповидный). Предусматривает подключение подвода и обратки к нижним соединительным отверстиям радиатора. На верхние отверстия устанавливают кран Маевского и заглушку. Применяют для систем, в которых трубы скрыты под полом или плинтусом. Целесообразны для многосекционных радиаторов, при небольшом числе секций потери тепла доходят до 15%.
  • Боковой способ, пользуется популярностью. Трубы подсоединяют к радиатору с одной стороны: подвод теплоносителя через верх, обратку — через низ. Не подходит для приборов с большим числом секций.

Фото 2. Двухтрубная схема отопления с боковым типом подключения. Указана температура подачи и обратки.

  • Диагональный (или боковой перекрёстный) способ подразумевает подачу горячей воды сверху, подключение обратки — снизу и с другой стороны. Подходит для радиаторов с числом секций не менее 14 шт.
  • Третьим вариантом организации схемы отопления является гибридный способ, основанный на одновременном использовании однотрубной и двухтрубной систем. Например, коллекторная схема предполагает подачу теплоносителя через одиночный стояк, дальнейшая разводка на месте осуществляется по индивидуальному плану.

Принцип работы, как повысить производительность

Одиночный контур не обеспечивает равномерного прогревания отопительных приборов, теплоотдача уменьшается по мере удаления от котла (в последние радиаторы поступает теплоноситель холоднее, чем на первые). Недостаток подобной системы — большие значения давления теплоносителя.

Справка. производительность однотрубной системы повышается при наличии циркулярного насоса или байпасов, сформированных на каждом этаже.

Преимущества двухтрубного варианта отопления:

  • прогрев достаточного числа приборов в равной степени, вне зависимости от их расстояния до источника тепла;
  • корректирование температурного режима, проведение ремонтных мероприятий на отдельном приборе не оказывает влияние на работу других.

Недостатки:

  • сложность схемы разводки;
  • трудоёмкость установки и подключения.

Оптимальным выбором для частного строительства является самая производительная двухтрубная система, которую также часто выбирают для отопления элитного жилья.

Монтаж двухтрубной системы целесообразно проводить с установкой циркуляционного насоса, который позволяет использовать трубы меньшего диаметра.

После него, с целью предохранения контура рециркуляции от продавливания, ставят обратный клапан.

При монтаже системы без циркулярного насоса соблюдается правило: подача возможна если есть уклон от или к котлу. Теплоноситель с более высокой температурой через подвод (наклон от котла к отопительному прибору) поступает в радиатор и прогревает его, а затем выходит через обратку (наклон от радиатора к котлу), но с уже меньшей температурой. Опытные мастера нередко прибегают к замене рециркуляционного насосного кольца на систему 3-х или 4-х ходовых смесителей.

Важно! При естественной циркуляции, весь трубопровод от стояка к радиаторам не должна иметь большую длину.

Особенности

Продолжительная работа котельного оборудования возможна при правильно спроектированной системе разводки труб, которая обеспечивает определённую разницу температур между трубами, выводящими и подводящими теплоноситель.

Внимание! Наличие существенной разницы температурных значений является причиной образования на камере сгорания обильного конденсата.

Капли воды, особенно в соединении с образующимся при горении оксидом углерода (в случае твердотопливного оборудования), быстро разъедают стенки камеры, нарушается герметичность важного элемента, и котёл выходит из строя.

Приемлемым решением в данной ситуации является подсоединение дополнительного водонагревающего устройства — бойлера. Он устанавливается рядом с котлом специальным образом, чтобы теплоноситель, пройдя по всем приборам системы, попал в него, а затем в котёл.

Фото 3. Система отопления с бойлером для нагрева воды. Прибор установлен рядом с газовым котлом.

Таблица температуры в трубопроводе отопления

Температура отопления, включая трубы обратки, напрямую зависит от показателей уличных термометров. Чем холоднее воздух на улице и выше скорость ветра, тем больше затрат на тепло.

Разработана нормативная таблица, отражающая значения температур на входе, подаче и выходе теплового носителя в системе отопления. Представленные в таблице показатели обеспечивают комфортные условия для человека в жилом помещении:

Темп. внешняя, °С +8 +5 +1 -1 -2 -5 -10 -15 -20 -25 -30 -35
Темп. на входе 42 47 53 55 56 58 62 69 76 83 90 97 104
Темп. радиаторов 40 44 50 51 52 54 57 64 70 76 82 88 94
Темп. обратки 34 37 41 42 43 44 46 50 54 58 62 67 69

Важно! разница между температурами значениями подачи и обратки зависит от направления движения теплоносителя. Если разводка сверху, перепады составляют не больше 20°С, если снизу — 30°С.

Норма давления

Эффективная передача и равномерное распределение теплоносителя, для производительности всей системы с минимальными потерями тепла возможны при нормальном рабочем давлении в трубных магистралях.

Давление теплоносителя в системе подразделяется по способу действия на в виды:

  • Статическое. Сила воздействия неподвижного теплоносителя на единицу площади.
  • Динамическое. Сила действия при движении.
  • Предельный напор. Соответствует оптимальному значению давления жидкости в трубах и способному поддержать работу всех обогревательных приборов на нормальном уровне.

Согласно СНиП оптимальный показатель равен 8—9,5 атм, снижение давления до 5—5,5 атм. нередко приводит к перебоям отопления.

Для каждого конкретного дома показатель нормального давления индивидуален. На его значение влияют факторы:

  • мощность насосной системы, подающей теплоноситель;
  • диаметр трубопровода;
  • отдалённость помещения от котельного оборудования;
  • износ частей;
  • напор.

Контролировать давление позволяют манометры, монтирующиеся непосредственно в трубопровод.

Почему не работает обратка

Существует множество проблем, связанных с обраткой в отопительной системе.

Передавливает подачу

Температура воды в трубопроводе обратки определяется устройством системы отопления, соответствует значению в графике температур, утверждённому обслуживающей организацией.

Нередко жильцы квартир сталкиваются с проблемой, когда обратка передавливает подачу.

Распространённая причина — переход горячего теплоносителя из магистрали подачи в контур обратки через всевозможные части (например, перемычки) трубопровода горячего водоснабжения или вентиляцию. При автоматическом приборе регулирования, как правило, достаточно его правильно настроить.

Теплоноситель плохо сходит

При нарушении циркуляции жидкости в тепловом контуре, вода в трубах обратки плохо сходит. Первоначально проверяют соответствие мощности циркуляционного насоса требованиям. Причина может скрываться в банальной протечке трубопровода. Ситуация с плохой циркуляцией типична для многоквартирных домов, расположенных на конечном участке теплотрассы с недостаточным перепадом давления.

Обратка холодная, забиты трубы

Низкая температура обратки — серьёзная проблема, мешающая обеспечить комфорт в помещении. Причины холодной обратки:

  • неправильная разводка отопления;
  • воздушный пузырь в системе или стояке;
  • недостаточный расход воды по сети;
  • заниженная температура в подводных трубах;
  • увеличенные объёмы теплопотерь;
  • неэффективность насосного оборудования, результат: слабая циркуляция и недостаточный перепад температур между подачей тепла и обраткой;
  • пониженное давление;
  • забитые трубы и радиаторы.

Применение кранов Маевского позволяет ликвидировать воздушные пробки, препятствующие движению теплоносителя.

Фото 4. Кран Маевского, установленный на радиаторе отопления. При помощи него можно спустить лишний воздух из системы.

Важно правильно спускать воздух:

  • запорной арматурой остановить подачу тепла;
  • открыть кран Маевского, спускать теплоноситель с воздухом;
  • восстановить перемещение тепла, открыв запор.

Узкий проход регулировочного крана нередко объясняет заниженную температуру обратки, это повод заменить его на новый.

Периодически проверяют трубопровод на засорённость, которая мешает движению теплоносителя. Грязь и отложения удаляют. Если восстановить проходимость труб не получается, участок заменяют новым трубопроводом.

Внимание! Установить точную причину неполадки можно после проверки всей отопительной системы.

Схемы подключения котлов, радиаторов, обвязки в домашнем отоплении

Сделать систему отопления для дома можно самостоятельно в том случае, если имеются навыки ведения сантехнических и строительных работ. По другому сказать, — нужно уметь трубы паять, обрезать, соединять, а также закручивать гайки, знать назначение и технические характеристики применяемого оборудования, иметь представление о гидравлике и теплотехнике и еще много чего…

Тогда, воспользовавшись типовыми проверенными схемами и решениями, можно создать систему отопления для небольшого дома только лишь своими руками.

Но если навыков выполнения работ нет, то придется наблюдать за тем, как делают систему отопления специалисты. При этом крайне желательно также ознакомиться с основными правилами создания системы, схемами размещения оборудования и др., чтобы проконтролировать выполнение работ и вовремя устранить ошибки, если таковые будут допущены.

Ниже приведены отдельные нюансы создания системы отопления в частном доме, на которые стоит всегда обращать внимание в первую очередь. Начнем с подключения котла, так как в котельной зачастую допускается много ошибок.

Подключение настенного котла

Настенные котлы обычно автоматизированные, в них имеются два важных элемента системы отопления:

  • группа безопасности, которая состоит обычно из воздушного клапана, манометра, аварийного клапана избыточного давления;
  • циркуляционный насос, который обеспечивает движение жидкости в системе отопления;

Поэтому подключение настенного котла наиболее простое, оно должно выполняться по следующей схеме (рассматриваем направление «от котла»):

Подача:
– кран с американкой для подключения котла;
— переходной фитинг на трубы – американка.

Кран обязателен, ставится сразу перед котлом, чтобы можно было обслуживать котел без слива системы.

Обратка:
— кран с американкой для подключения котла;
— грязевой фильтр;
— кран;
— тройник с расширительным баком, вентилем отключения, вентилем слива и заливки системы.
— переходной фитинг на трубы – американка.

Грязевой фильтр является обязательным элементов любой системы отопления. Он устанавливается отстойником вниз, или, в крайнем случае, горизонтально. Грязь из системы будет скапливаться в фильтре, периодически удаляется из отстойника. При установке нужно соблюдать направленность относительно струи.

Краны возле фильтра обязательны, только закрыв оба крана можно обслуживать, очищать фильтр.

Далее рассмотрим обвязку напольного котла. Она более сложная, так как в напольном котле отсутствуют группа безопасности и насос. Поэтому они устанавливаются самостоятельно, как элементы котельной.

Группа безопасности, циркуляционный насос, расширительный бак

Для группы безопасности лучше приобрести специальный тройник и смонтировать на нем приборы, указанные выше. Важно подобрать приборы в соответствии с параметрами системы отопления, обычно максимальное давление – 4 МПа, рабочее — 1,5 – 2,0 Атм.

Насос приобретается по характеристикам системы. Для обычного небольшого дома (до 150 м кв.) в отопительную систему всегда будет достаточным циркуляционный насос с напором до 4 м (0,4 атм) (нередко для радиаторов и до 250 м кв.)

Соответственно маркировка насоса 25 – 40, где первая цифра указывает диаметр резьбы патрубков подключения, в данном случае 25 мм – 1 дюйм, но может быть и 32 мм и больше. Вторая цифра 40 является обозначением создаваемого давления – до 0,4 атм, а значит косвенно и мощности насоса.

Каждый циркуляционный насос имеет регулировку скорости вращения, не менее чем в 3 положениях, которой будет определяться объем прокачиваемой жидкости и реальная потребляемая мощность.

В первом положении регулировки циркуляционный насос 25-40 будет потреблять не более 30 Вт электроэнергии. Чаще для правильно сделанной системы отопления в утепленном доме до 150 м кв. будет достаточно тепловой энергии, которая сможет подаваться этим насосом на первой скорости.


Часто повторяемой ошибкой при создании системы отопления является установка излишне мощных насосов, невзирая на то, что они стоят в разы дороже и больше потребляют электроэнергии. Там где оптимальным является насос 25 — 40м (в большинстве небольших домов), устанавливают насосы 25 — 60, и даже 25 – 80 и мощнее.

Объем расширительного бака можно подобрать по упрощенной формуле – 1/10 от объема теплоносителя в системе. Лучше чуть-чуть больше, но не меньше. Например, если в системе 200 литров, то лучше установить 35 литровый расширительный бак но не меньше чем 20 литров.

Подключение напольного неавтоматизированного котла

Рассмотрим схему, как должен подключаться напольный котел, не оборудованный автоматикой. (По направлению от котла.)

Подача:
— американка для подключения котла;
— группа безопасности или хотя бы аварийный клапан;
— кран;
— переходной фитинг на трубы – американка.

Обратка:
— кран с американкой для подключения котла;
— циркуляционный насос;
— грязевой фильтр;
— кран;
— тройник с расширительным баком, вентилем отключения, вентилем слива и заливки системы.
— переходной фитинг на трубы – американка.

Между котлом и группой безопасности не должно быть никаких кранов. Если такой кран, установлен и закрыт, то может произойти авария.

С аварийного клапана должен быть отводной трубопровод, чтобы вода при сбросе не попала на котел и другое оборудование.

Вал ротора циркуляционного насоса должен располагаться только горизонтально Установка ротора вертикально – грубая ошибка инструкции по установке, тем не менее, допускается часто.

Насос устанавливается в трубопровод в соответствии с направлением движения жидкости.

Клемная коробка насоса должна быть сверху для удобства подключения и обслуживания. Если она оказывается снизу (при установке насоса в соответствии с направлением жидкости), то ее вместе со статором необходимо развернуть вверх, что позволяет сделать конструкция насоса, при ослаблении специальных болтов.

Расширительный бак ставится всегда со стороны всаса насоса, т.е. перед насосом по ходу движения жидкости. Это обязательное правило.

Выбор схемы отопления и подключение радиаторов

Многие специалисты считают однотрубную систему (ленинградка) неудовлетворительной по многим параметрам. В первую очередь в ней весьма сложно добиться нужного распределения тепловой мощности между радиаторами, но ей присущи и другие недостатки. Рекомендуется использовать двухтрубные системы, чаще – тупиковую или попутную. Подробней узнать о данных схемах подключения радиаторов можно и на данном ресурсе.

Радиаторы к трубам необходимо подключать по диагональной схеме:
– с одной стороны радиатора сверху подача, с другой стороны снизу обратка.

Возможно подключение коротких (менее 1 метра длиной) радиаторов по односторонней схеме:
— с одной стороны сверху подача, снизу обратка.

Все другие схемы включения радиаторов, в том числе и «низ-низ» не желательны к применению из-за большой потери полезной мощности радиаторов.

Краны и раздельная регулировка тепловой мощности радиаторов

У каждого радиатора на его подаче и обратке должны быть установлены краны. Они обеспечивают отключение радиатора без слива всей системы с сохранением ее работоспособности. С помощью отдельных кранов можно регулировать мощность радиатора.

Возможна установка следующих видов кранов в системе отопления:

  • Шаровые. Не предназначены для регулировки потока, должны работать только в двух положениях – «Открыто» или «Закрыто». Устанавливаются на отводах каждого радиатора, для снятия или отключения его от системы.
  • Вентильные. Плавная регулировка потока крайне затруднительна, и на практике редко выполняется. При изменении положения штока на 5 – 95%, объем проходящей жидкости меняется всего лишь на 10%, поэтому подобрать нужное гидравлическое сопротивления затруднительно, краны склонны к заиливанию, на практике, в 95% случаев не работоспособны. К установке не рекомендуются.
  • Клапана нажимного действия. Предназначены для регулировки тепловой мощности радиаторов совместно с тепловыми регулятороами (тепловыми головками). Они могут устанавливаться и работать только в системах с автоматизированными котлами. С твердотопливными котлами автоматические регуляторы мощности на трубопроводах не допускаются, так как закрытие всех радиаторов или их части приводит к перегреву системы и возможной аварийной ситуации.

Выше были рассмотрены несколько значимых вопросов создания системы отопления.
Выполнение указанных рекомендаций по монтажу системы отопления, а также правильный выбор мощности оборудования и подбор диаметра труб, позволит создать принципиально правильную систему отопления для небольшого дома.

Вопросы по схеме системы отопления с циркуляционным насосом

__________________________________________________________________________

Вопросы по схеме системы отопления с циркуляционным насосом


Вопрос: Подскажите, будет ли работать данная схема отопления с циркуляционным насосом.
Трубы ПП. Трубы будут D32. От них к батареям труба D25. Между вторым и первым этажом от батареи к батарее труба D25. Обратка труба D32. Подача по второму этажу будет проложена с уклоном 2 см на 10 метров. Система будет закрытого типа.

Ответ: А зачем так сложно? Какой смысл задирать трубы под потолок второго этажа, если это система с принудительной циркуляцией? Всё будет прекрасно работать с нижней разводкой по второму этажу, по первому тоже часть батарей можно развязать по низу, при этом в два раза меньше будет стояков. Ваша схема тоже рабочая, но весь дом получается в трубах, подумайте, как это будет выглядеть, к тому же можно в половину сэкономить на трубах.

Вопрос: Трубы задрал под потолок на всякий случай, если насос работать перестанет, может будет естественная циркуляция?

Ответ: У Вас скажем так, гибридная однотрубно-двухтрубная СО. Но в металле такой шедевр предпочтительнее. Ну хотя бы лежаки подачи и обратки. А опуски уже из полипропилена. Мои цифры (диаметры) в металле.
Переведите в полипропилен сами, но только стояки!

Вопрос: У меня будет циркуляционный насос стоять. Все-таки, хоть какая-нибудь циркуляция останется (при ПП трубах), если насос отключится?

Ответ: Останется, но значительно меньшая, чем в указанных диаметрах в металле. Либо трубы (лежаки) стоит увеличивать до Д.63 в ПП. Но сам факт применения ПП труб не на много улучшит циркуляционное давление в системе отопления, т.к. охлаждение будет затруднено. Сам полипропилен не отдаёт тепло в помещение, а только транспортирует его с минимальными тепловыми потерями до приборов.

Насос улучшит ситуацию с циркуляцией (но с увеличенными диаметрами), но в идеале при наличии 2-х этажного строения с хорошей высотной составляющей для получения неплохого циркуляционного давления нужно (желательно) стремиться к обычному режиму работы естественной циркуляции. А насос останется на случай подмоги в сильные морозы, чтобы снять нагрузку с котла и тем самым уменьшить расход газа.

Вопрос: Высота 1-го этажа 2.7, 2-го 2.5 метра. Почему с увеличенными диаметрами для насоса? Для системы с насосом, как я понимаю, вроде и 32 ПП трубы хватит, для ЕЦ надо увеличивать и диаметр и ставить металлические трубы.

Ответ: Ваш ориентир полностью на насос, а это не совсем правильно. После аварийного выключения эл. энергии, нужны 2 вещи. Либо это ИБП (или бензогенератор), либо автономная работа системы отопления не требующая электропитания (ЕЦ). Имея высокое строение (2 этажа и выше) нужно стремиться обеспечить работу СО прежде всего в — аварийном режиме, а он и есть режим естественной циркуляции. Но тогда если уж аварийный режим работы ЕЦ, то почему же не оставить его и основным режимом работы. Но тогда Вы спросите -А для чего же тогда насос? Насос как дополнительный инструмент, помогающий системе с ЕЦ быстрее выходить на проектную тепловую нагрузку экономя тем самым топливо которое сожжёт котёл за определённый промежуток времени.

Насос сокращает то самое время прогрева, снимая перерасход газа. Дело в том, что система отопления с естественной циркуляцией после выхода на проектную нагрузку не требуется большое кол-во топлива, т.к. циркуляционное давление тем лучше — чем больше тепловой порог (Т* теплоносителя) самой системы и разумеется этажность здания (высота самой СО). Важно обеспечить хороший теплосъём с приборов (и частично с магистралей и стояков), а Вашем случае только с приборов. Но чтобы обеспечить хороший расход по всей СО от верхних лежаков (розлива) к нижним, важны хорошие диаметры (внутр. сечение труб). И само собой увеличенный диаметр стояков и подводки к приборам (включая регулирующую арматуру прибора). В Вашем случае имея 2 этажа желательно учесть всё вышеописанное и спроектировать СО в правильном ключе.

Вопрос: Хотел спросить.
1. про перемычку на каждый радиатор, это такие перемычки как на втором этаже нарисованы, такие же и на первом сделать?
2. Если у меня вход обратки в котел находится на высоте 30 см от пола, а обратка от радиаторов будет идти на высоте 10 см, будет ли данная схема работать?

Ответ: 1. Перемычка обеспечивает проход т/носителя по стояку к нижнему прибору. А подвод труб к верхним приборам 25 (в металле) + краны на подаче и обратке прибора. Кранами Вы обеспечите достаточный расход в приборе. Совсем не обязательно делать её (перемычку) на приборе 1-го этажа. К нему нужно обеспечить максимальный расход из верхнего лежака. К тому же на схеме прибор 1го запитаны по диагонали ( идеал для больших радиаторов).

2. Будет работать нормально. Но по правильному, нужно стремиться к равному расположению (в линию) на одном уровне (для уменьшения сопротивления на входе). А для одноэтажных строений и вовсе заглублять котёл в приямок!

Вопрос: А чем циркуляционный напор уменьшают? и гидравлическое сопротивление увеличивают?

Ответ: Не надо вам циркуляционный напор уменьшать (ЕЦ). В этом доме он по максимуму. Т.е. Вся система с разводкой максимально «задрана» вверх. Из большего меньше всегда можно сделать шаровым краном на стояке, крыле, радиаторе. Наоборот — проблема. Гидравлическое сопротивление увеличивают в худшем случае — диаметром разводки, в лучшем, даже обязательном, — опять тем же шаровым краном.

Вопрос: Хорошо, а как относится к тому что:

1.Увеличение расхода в соседних циркуляционных кольцах приведет к 40 % уменьшению расхода в циркуляционном кольце через отопительный прибор.

2. Программа сама подбирает количество секций радиаторов (по моему мнению на 20 кв.м. достаточно 10 секций по 190 ват), а программа считает что надо поставить 15 секций. Что с этим делать не пойму. Просто хочу рассчитать систему, чтобы не было никаких ошибок.

Ответ: Откуда программе знать ваши реальные теплопотери? Которые рассчитываются, кстати не по «площади» а по т/п ограждающих конструкций — стены, пол, кровля, окна, вх. дверь, вентиляция. Не получится. Просто потому что расчетные теплопотери никогда точно не совпадут с реальными. «Класс точности» не тот. И диаметры труб унифицированы, на случай, если программа выдаст, например, необходимый диаметр д34.

Придется принимать ближайший диаметр. Какой — дело выбора, но не точности. И насос будет давать расход, соответственно фактическому сопротивлению вашей системы, расчет которой — сплошь на условных коэффициентах. Речь может идти о достаточной точности. Не к ошибкам. Последняя ваша схема — с нерегулируемыми радиаторами 1-го этажа. Т.е. если прикрывать на них краны, будут отключаться и
приборы 2-го этажа. Если это устраивает.

Вопрос: Особо интересует мнение противников ПП в ЕЦ. Способна ли система работать в режиме естественной циркуляции. В однотрубной схеме отопления на два этажа труба ПП 50 с внутренним диаметром 32. Площадь здания 120 кв. Подача на верх ПП 50 батареи алюминиевые 6 шт на 2эт 6шт на 1 эт. Подключение нижнее. Вниз по стоякам ПП 32 отключение на первом этаже диагональное обратка на котел ПП 50. Работоспособна ли схема в режиме ЕЦ или переделывать на принудительную?

Ответ: Маловато данных для точного прогноза. Последовательность подключения, высота стояка… То есть, движение, конечно будет, но хватит ли скорости для нормального нагрева последних батарей? А разве трудно поставить насос за 3 т.р.? Для подстраховки. А включать можно по обстоятельствам. На счет насоса согласен, да и цена вопроса не столь велика. Однако именно в зимнее время бывают проблемы с электричеством. На счет доп. данных высота глав стояка 3.5м .Подключение 2 этаж низ-низ последовательное от подающей трубы сверху в низ стояки ПП 32 на каждый радиатор свой стояк. На первом этаже подключение диагональное сверху от стояка вниз далее по сборной трубе ПП 50 от всех нижних радиаторов вода пойдет к котлу. Котёл углублен на 90 см . На всех радиаторах краны.

Длина подающей трубы на 2 этаже 21м длина обратки на первом тоже 21м. Особенность системы в том, что подача на 2 этаже будет лежать на полу с соответствующим уклоном 22см. Естественная циркуляция возникает между нагретым и остывшим столбом воды. Примитивно — между Т* стояка котла и стояками приборов. Вот и представьте картину циркуляции, когда вода по ходу остывает в 30 раз медленнее, чем в стальных трубах. Перепад возникнет только за счет разницы высоты установки котел/приборы. И в вашем случае это обнадеживает. Добавит свое и охлаждение в верхней трубе за счет радиаторов 2-го этажа, по вашей схеме. Так что ЕЦ будет. Вам она может показаться даже хорошей. Но до параметров вашей системы, будь она со стальными трубами, ей еще добираться. Переделывать на принудительную ничего не придется.

Достаточно просто добавить насос (секретное оружие некоторых сантехников в 90-е годы). А сейчас уже и отсутствие насоса вызывает недоумение. Ваша схема — «гибрид», если правильно понял, однотрубки на 2-м эт. и двухтрубной вертикальной на первом. Вариант, используемый иногда, при недоверии к способностям однотрубки отопить 2 этажа. Оно бывает обосновано при недостаточной циркуляции (мала этажность, большая площадь, трубы — ПП). Недостаточная циркуляция, при этом — не свойство той или иной системы (1-2тр.) а следствие вышеуказанных причин. Так что, пенять не на что. Настоятельно рекомендовал бы, при возможности разбить разводку на 2 крыла. Это очень и очень улучшит параметры вашей системы в общем. В том числе, и особенно, в режиме ЕЦ. Уклон можно принять 2см./10метров.

Вопрос: не будет ли схема работать только на малый круг. Длина малого круга на подаче будет 5м а большого 15м.

Ответ: Зависит от того, какое циркуляционное давление у каждого «круга» и какое гидравлическое сопротивление каждого из них. Если эта разница незначительна, работает саморегуляция естественной циркуляции — вода с одинаковой температурой стремится занять одинаковый уровень. Выражается в том, если
речь о радиаторах, что их температура (у нескольких радиаторов) одинакова между собой по высоте приборов (идеальный случай, когда этому не мешает). То же и с «кругами — крыльями — ветками». В любом случае, схема нужна.

Вопрос: Есть ряд вопросов связанных с отоплением . 1- Нужно-ли ставить доп. фильтра в системе помимо сетчатого перед насосом если да то, какие и как они влияют на ЕЦ? 2- Какую воду лучше использовать просто кипяченую или дистиллированную и каково воздействие антифризов на алюминий? 3-Каково влияние длинных прямых (в схеме есть участок порядка 9м) без радиаторов на ЕЦ. 4- Стоит ли ставить компенсаторы на эту длину ведь коэффициент расширения ПП порядка 1мм на 1м?

Ответ: 1. Для насоса — фильтр. Сопротивление «забитого» фильтра велико даже для насоса. Сдается, в пластиковых трубах ему особенно-то делать нечего. После месяца с начала работы. Даже с железными трубами дешевле пожертвовать насосом раньше отпущенного ему срока, чем зажимать систему. Но, раз положено, значит, надо. Хотя известный, сетчатый, не очень подходит. А специальные дорогие. На режим естественной циркуляции никакие фильтры не требуются, нет трущихся частей. И скорость «не та». И грязь не носит.

2. Кипяченую. К тому же предварительным кипячением устраняется нерастворимая жесткость — осадок можно слить перед заливкой в систему, Чтобы нечему было забивать фильтр. Вода не должна быть вконец обессоленной (дистиллированной) Воздух/кислород можно удалять путем нагрева в работающей системе, но тогда это затягивается, сопровождаясь завоздушиванием СО и окислением металлических частей системы. Эти рекомендации — на озадаченного любителя. Обычно этого никто не делает. И последствия — неочевидны.
Антифриз против алюминий — попросим ответить пользователей комплекта. Влияние трубы 9м. на ЕЦ, как и всех других труб, можно оценить только по месту расположения в системе.

Вопрос: На подаче и обратке коридоров 32 труба длиной по 5м позволит ли это выровнять циркуляционное давление в ветках? На малой ветке в коридорах 4 радиатора по 7 секций длина подачи и обратки 10м. На длинной ветке идущей в комнаты труба 50 количество радиаторов на 2 этаже 4 по 6 секций на первом этаже 4 радиатора по 8 секций длина подачи и обратки 16м. Высота стояков на радиаторы 2.3м. Высота главного стояка 3.5м .Стоит ли уменьшать диаметр подающей трубы от 50 в начале далее 32 и 25 в конце длинной ветки если да то в чем здесь смысл? То же самое предлагают сделать и на обратке 25-32-50-ка уже к котлу?

Ответ: По поводу коридоров. Ни диаметр, ни длина не выравнивают циркуляционное давление по вашей схеме. Несмотря на то, что центры охлаждения обоих крыльев находится на одной высоте, вторая составляющая цирк. давления — разница температур в стояках будет разной. А гидравлика (сопротивление) тем более. Выражается это в том, что циркуляция в дальних стояках большого крыла будет более интенсивной, но с меньшей температурой. А в стояках малого крыла и ближних стояках большого — меньшей интенсивности, но с большей температурой. К тому же будет накладываться еще несколько факторов:
Гидросопротивление кольца дальних радиаторов большого крыла будет притормаживать циркуляцию. (можно пренебречь — это естественно).

Комбинирование однотрубки на 2-м этаже и 2-трубки на первом приводит к следующему — циркуляционные давления у приборов этих этажей разные, мало того, у однотрубки отбирается ее преимущество — независимое кольцо циркуляции, которое теперь зависит от регулировки нижних радиаторов. И в случае их прикрытия, гаснет вместе с ними. Причем, по ходу отбирается расход из однотрубки 2-го этажа, уменьшая расход, пропускаемый к последним радиаторам. Здесь это оправдано, последним радиаторам как 1-го, так и 2-го этажа не нужен большой расход, поэтому логично снижение диаметра разводки к концу крыла. Большой плюс для циркуляции 1-го этажа — наличие радиаторов на однотрубной разводке 2-ко этажа. В нормальной (стальной) системе это поднимает центр охлаждения всей системы (крыла) охлаждая по пути теплоноситель и (в этой схеме) создавая разность температур для стояков 1-го этажа.

А в вашем случае ПП труб — это единственный способ достаточно охладить т/носитель для его циркуляции. Но все это идет на пользу первому этажу. Второй, как говорилось, лишается некоторых (важных) свойств однотрубки. Если режим ЕЦ все равно понесет ущерб, почему не сделать оба крыла полноценной однотрубкой? С кольцами циркуляции д50. ПП. Избавитесь от неопределенности с циркуляцией при регулировке. Прикрывая радиаторы 2-го этажа — ухудшаете циркуляцию 1-го. Прикрывая приборы 1-го —
ухудшаете работу 2-го этажа. Во всяком случае, получите возможность регулировки любого прибора без ущерба остальным. С неизменяемым, хорошим и одним циркуляционным давлением для колец циркуляции.
+ стабильная работа насоса небольшой мощности.

Вопрос: На сегодняшний день ситуация такова весь материал уже куплен из расчета ПП50 с избытком условия покупки были таковы (возможно вас это удивит) что все купленное может быть возвращено или заменено на другой материал. Сейчас достраиваю котельную. Единственное изменение в предложенной схеме это установка кранов на подаче и обратке в коридорах, чтобы её заглушить при отключении электричества надеюсь хоть какая-то циркуляция в большом круге останется. В самом главном по схеме и диаметру труб определился ещё раз. Остались вопросы по типу кранов на радиаторах и установке расширительного бачка, где его лучше ставить на подаче или обратке и стоит ли делать систему закрытой?

Ответ: Тип арматуры для однотрубки — полнопроходая, без сужений прохода, который должен быть не меньше внутреннего диаметра подводящей трубы — 20мм. Оптимально — шаровый кран. Система делается закрытой по необходимости предотвращения образования воздуха/пара на тонких стенках теплообменника настенного котла и рабочем колесе насоса при работе в воде повышенной температуры. Давление столба воды в метрах над местом установки насоса зависит от температуры воды и составляет: при 70*- 3м.в.ст. при 90*- 5м.в.ст. При 100* -11м.в.ст.

Причем, в открытой системе давление создается именно столбом воды… В закрытой системе — в.ст. +величиной избыточного давления над местом установки насоса. Если указанных данных для закрытой системы нет, весь вопрос сводится к личным предпочтениям. Которые, как известно, не обсуждаются. Причем, действительно необходимого для системы давления можно достичь либо манипуляциями с поддержанием давления, группой безопасности, давлением подпитки, либо подняв открытый бачок выше системы.

Вопрос: Хочу самостоятельно монтировать систему отопления, воду и канализацию уже провел, все функционирует. Теперь решил разбираться с отоплением, буду задавать вопросы по мере их поступления.
Дом 10×10, котел планируется настенный Vitopend 100 24 кВт (отопление радиаторное, горячее водоснабжение). По трубам: хотел армированный полипропилен стояки 32 мм, обратка и подача -25 мм, к радиатору -20 мм). Краны Маевского и термоголовки на все радиаторы. Хотел, чтобы оценили мою схему.

Есть вопросы:

1.На первом этаже последний радиатор идет по холодному коридору (не жилое), можно ли его поставить там и не будет ли большой разницы температур между подачей и обраткой. Или может тогда отопление пустить против часовой стрелки, тогда этот радиатор будет первым. Как лучше поступить? Или вообще может его не ставить в этом коридоре. А поставить хотелось бы.

2. Так как дом деревенский, то строили и пристраивали и, соответственно, пол идет на разном уровне. Как в этом случае или все равно, ведь система, то принудительная.

3. Еще вопрос — радиатор с запорной арматурой и пр. (что куда ставить правильнее??) если не так подскажите. И нужно ли на обратке кран?

Ответ: Зачем дверь обходить? Идите 2-мя трубами от котла влево, от котла и радиатора 4 32 трубой, дальше 25 и последние 3 20. Вверх 25 и тоже в одну сторону последние 2 20. На радиаторы только балансировочные вентили под термоголовки (желательно с предустановкой, поставьте, потом не пожалеете), если есть
возможность и на подачу и на обратку регулируемые запорные вентили. Есть полностью перекрывающиеся.
Без балансировочников с кранами замучаетесь регулировать, потом будут советовать поставить насос помощнее, потом еще один и т.д. Котел выбрали очень хороший, можно подогнать под любую систему отопления.

Вопрос: Планирую сделать самостоятельно двух трубную систему отопления с циркуляцией воды самотеком (правда насос будет так же установлен). Дом двух этажный, относительно не большой (4-и радиатора на весь дом). Все нюансы работы такой системы изучены, за исключением одного тонкого момента: обратка от батарей у меня будет проходить под полом, из-за чего уровень ее (обратки) будет ниже уровня горловины обратки в АОГВ — 40-50см, к тому же, я хотел, и расширительный бак установить под полом в контуре обратки.
Подскажите опытные люди, будет ли работать самотек? Электричество, к сожалению, регулярно отключают.

Ответ: Будет, но плохо. Имея 2 этажа, Вы обеспеченны хорошим циркуляционным давлением в СО ( при правильном монтаже конечно). Но как раз обратка пролегающая ниже патрубка входа в котёл и будет перечёркивать все «+» выдавая издержки в «-» данного способа разводки. Ваш выход заглублять ниже котёл, или хотя бы уравнять место входа в котёл с нижним лежаком. Речь скорее, о приямке — углубление ниже уровня пола для установки котла. Тогда нижний патрубок котла будет напротив трубы обратки.

Вопрос: Понял по поводу РБ его необходимо поставить в обратку до насоса. Спускник у меня будет обязательно, будет стоять в самой верхней точке.

Ответ: Спускник обеспечит удаление уже собравшихся пузырей. Микропузырьки проскочат мимо беспрепятственно. Держа путь в радиаторы. Если обратка с ЕЦ проходит ниже котла (под полом), то к ней повышенное требование по утеплению, дабы сильно не охлаждать теплоноситель, чтобы не препятствовать циркуляции.

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________ __________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

__________________________________________________________________________

ЭКСПЛУАТАЦИЯ И РЕМОНТ КОТЛОВ

Протерм Пантера     Протерм Скат     Протерм Медведь     Протерм Гепард     Эван
Аристон Эгис     Теплодар Купер     Атем Житомир     Нева Люкс     Ардерия     Нова
Термона     Иммергаз     Электролюкс     Конорд     Лемакс     Галан     Мора     Атон

_______________________________________________________________________________

Модели котлов    Советы по ремонту котлов    Коды ошибок    Сервисные инструкции

_______________________________________________________________________________

Монтаж и эксплуатация газовых котлов Бош 6000

Управление и обслуживание котлами Vaillant Turbotec / Atmotec

Обзор газовых котлов Житомир-3 Атем

Монтаж системы отопления частного дома

Котлы Данко, Росс и Dani — Ответы специалистов на вопросы пользователей

Рекомендации по монтажу настенных газовых котлов Навьен

Обзор твердотопливного котла Купер ОК-15 Теплодар

Неисправности и ошибки котлов Ферроли

Сборочные элементы, монтаж и подключение электрокотла Скат Protherm

Обзор отопительных котлов Дон КСТ-16

Ремонт и сервис котлов Вайлант — ответы экспертов

Обзор газового котла КСГ Очаг

Обзор отопительного котла Купер ОК-20 Теплодар

Комплектация и компоненты электрического котла Протерм Скат

Подключение и ввод в работу котла Будерус Логомакс U072

Ответы специалистов по неисправностям котлов Китурами

Советы мастеров по обслуживанию котлов Навьен

Обслуживание компонентов газового котла Navien Deluxe

Подключение котла Аристон Egis Plus 24 ff к рабочим системам

Обратный трубопровод котла холодный? Вот почему [и что делать дальше]

HeatingForce поддерживается считывателем. Когда вы совершаете покупку по ссылкам на нашем сайте, мы можем получать партнерскую комиссию. Узнать больше

В нашем 5-минутном руководстве по температурам подающей и обратной линии котла содержится все, что вам нужно знать о подающей и обратной трубах котла.

Также объясняется, почему температура подающей и обратной линии различается, а также правильный размер подающей и обратной трубы и почему подающая труба горячая, а обратная холодная.

Что такое подающая и обратная трубы котла

Когда ваш бойлер нагревает воду, она откачивается и циркулирует по вашей системе центрального отопления; эта горячая вода выходит из подающей трубы.

Затем вода проходит по вашей отопительной системе и возвращается в котел по обратной трубе.

Почему различаются температуры подачи и возврата

Вы заметите, что поток быстро нагревается и обычно горячее, чем возвратный трубопровод.

Это потому, что все трубопроводы и радиаторы остаются холодными, когда вы запускаете котел. Они поглощают часть тепла от воды, поэтому вода, возвращающаяся через возврат, более прохладная.

По мере того, как центральное отопление медленно нагревается, разница температур между двумя трубами становится ближе.

Размер подающей и обратной трубы

Для быстрой циркуляции горячей воды бойлер должен быть оборудован медной подающей и обратной трубой диаметром не менее 22 мм.Он может увеличиваться до 28 мм и более для больших объектов или коммерческих котлов.

Проблемы с возвратной трубой котла

Подводящая труба горячая, а обратная холодная

Это наиболее распространенная проблема, связанная с проблемами, связанными с температурами подающего и обратного трубопроводов; холодный обратный трубопровод котла, даже если поток горячий.

Естественно, поток нагревается быстрее обратного. Но если обратная труба не нагревается (или, по крайней мере, не нагревается), есть несколько потенциальных виновников.

# 1 — Неисправный насос или неправильная установка скорости

После того, как ваш котел нагрел воду, задача насоса — обеспечить циркуляцию этой воды по системе.

Если насос неисправен, велика вероятность, что не обеспечивает достаточной быстрой циркуляции этой воды. К тому времени, когда вода вернется в котел по обратной линии, она значительно остынет.

Значит, обратная труба будет намного холоднее, чем подающая.

Это могло произойти из-за:

  • Грязная отопительная вода блокирует насос
  • Неправильная настройка скорости насоса
  • Вал на насосе заклинило
  • PCB не обменивается данными с насосом должным образом.
Исправление

Мы создали подробное руководство по проблемам с тепловым насосом и их устранению.

# 2 — система с воздушным замком

Воздушные шлюзы любого типа могут вызвать прерывистую работу системы отопления.

Шлюзы могут быть в:

  • Насосы
  • Вешалка для полотенец
  • Радиаторы
Исправление

Необходимо удалить весь воздух из системы. Радиаторы и полотенцесушители имеют спускной клапан, который пропускает воздух.Их можно прокачать с помощью ключа для прокачки.

Если обратная труба все еще холодная, проблема может заключаться в насосе с воздушной пробкой.

Если это так, велика вероятность, что вы слышали стук и стук при неисправности насоса.

Поскольку для удаления воздуха из насоса необходимо снять внешний кожух, вам необходимо вызвать специалиста по газобезопасности.

# 3 — Засорение в системе отопления

Когда обратные трубы холодные, но подающая к котлу подача горячая, наиболее распространенной причиной является засорение.

Засорение обычно происходит от:

Накипь образуется из минералов, содержащихся в воде, и прикрепляется практически к любому месту.

Нагревательный шлам, с другой стороны, возникает из-за внутренней ржавчины радиаторов и трубопроводов. Когда он сломается, он может заблокировать радиаторы и даже обратную трубу вашего котла.

Это ограничивает поток горячей воды, поэтому радиаторы не нагреваются и, конечно же, температура воды в обратном трубопроводе в лучшем случае Лука-теплая.

Исправление

Во-первых, вам необходимо произвести горячую промывку системы с помощью чистящих химикатов. Это позволит избавиться от большинства отложений и накипи.

Затем вам понадобится:

  • Редуктор накипи для улавливания накипи
  • Фильтр котла для улавливания теплового шлама

Стоит отметить, что оба вышеуказанных устройства необходимо чистить при каждом обслуживании. В противном случае они заполнятся мусором и не смогут уловить что-либо еще, циркулирующее в системе.

# 4 — Трубопровод микроканальных труб

Далее у нас есть микроканальный трубопровод.

Если у вас есть радиаторы с трубчатым питанием 8 или 10 мм и полотенцесушители, есть вероятность, что поток либо ограничен, либо заблокирован (см. № 3).

Исправление

Когда к вам приедет инженер-теплотехник, чтобы диагностировать и устранить проблему, убедитесь, что вы показываете им все микроканальные трубопроводы.

В зависимости от расположения вашего трубопровода, возможно, потребуется его замена.Есть вероятность, что он установлен неправильно.

# 5 — Вы добавили дополнительные держатели для полотенец или радиаторы

Системы отопления указаны в BTU. Это измерение тепла.

Трубопроводы, радиаторы, ваш котел и даже насос котла будут спроектированы с учетом BTU вашей собственности.

Добавляя радиаторы или полотенцесушители, вы заставляете бойлер нагреть дополнительную воду, а насос — циркулировать больше воды.

Это не очень распространено, но если вы добавили полотенцесушители или радиаторы (особенно большие, например, 1600 мм +), есть вероятность, что система отопления выйдет из строя, и это приведет к холодной обратной трубе на бойлере.

Исправление

Без осмотра размера собственности, котла, насоса котла, количества полотенцесушителей и радиаторов трудно понять, является ли это проблемой.

Пригласите квалифицированного инженера-теплотехника проверить вашу систему отопления.

Что дальше?

Спасибо за прочтение нашего 5-минутного руководства по температурам подающей и обратной линии центрального отопления и котла. Надеюсь, это указывает на то, почему обратная труба котла не нагревается, а подающая труба нагревается.

Что такое система обратного возврата?

Примечание редактора: Джефф Сайнс является членом команды Рэя Харди в Engineered Software, Inc.

Как добиться равного расхода компонентов в трубопроводной системе с минимальным прерыванием и точной настройкой регулирующих клапанов? В системах с несколькими ответвлениями и петлями поток будет идти по пути наименьшего сопротивления. В неконтролируемой системе будет внутренняя разница в потоках к компонентам с общим источником.

На это влияет множество факторов, включая размер трубы, длину, шероховатость, материал, фитинги, изгибы и многое другое. Я даже видел, как операторы добавляли дополнительные изгибы и фитинги в одну ветку, чтобы она соответствовала геометрии другой, чтобы поддерживать равный поток через каждую ветку. Хотя это должно работать, оно имеет множество недостатков, таких как дополнительные затраты на компоненты, снижение общей эффективности системы и проблемы, когда компоненты выходят из строя и необходимо производить ремонт.

Изображение 1. Замкнутая система с обратным возвратом.( Изображения любезно предоставлены автором )

Один из вариантов, который потенциально может помочь, — это система обратного возврата. Хотя многие инженеры не слышали об этом простом приеме, он в течение многих лет широко использовался в сфере отопления, вентиляции и кондиционирования воздуха (HVAC), чтобы помочь сбалансировать потоки. HVAC имеет много идентичных устройств, требующих равного количества потока, таких как бойлеры и чиллеры, а также их соответствующие излучатели тепла. Это может относиться к любому количеству процессов, от продвинутых, где требуется надежность и повторяемость оборудования, до простого наполнения нескольких резервуаров с одинаковой скоростью.

Самый простой способ запомнить основы системы обратного возврата — использовать аббревиатуру LIFO (Last In, First Out).

Изображение 2. Замкнутая система с прямым возвратом

Система обратного возврата — это тип замкнутой системы, в которой возвратный коллектор подключен к наиболее удаленной гидравлически нагрузке, как показано на рисунке 1. По сравнению с системой прямого возврата на рисунке 2, где возвратный коллектор подключен к ближайшей нагрузке. к насосу система обратного возврата распределяет потоки и давление более равномерно по системе, делая ее по своей сути сбалансированной.

Собственный баланс системы обратного возврата может быть показан при моделировании в компьютерном программном обеспечении и расчетах систем. Давайте сначала посмотрим на распределение давления и расхода в системе прямого возврата. На изображении 3 показана система прямого возврата без контроля нагрузок и насос, рассчитанный на 450 галлонов в минуту (галлонов в минуту), рассчитанный на 150 галлонов в минуту при каждой идентичной загрузке.

Изображение 3. Рассчитана система прямого возврата. Насос рассчитан на 450 галлонов в минуту

Давление на входе для каждой нагрузки уменьшается по мере удаления нагрузки от нагнетания насоса, а давление на выходе каждой нагрузки уменьшается по мере приближения нагрузки к всасыванию насоса.Это создает больший перепад давления на нагрузке 1 и уменьшение перепада давления на каждой нагрузке, чем дальше от подающего насоса находится ответвление. Этот профиль перепада давления вызывает снижение расхода с 155,9 галлонов в минуту при Нагрузке 1 до 145,9 галлонов в минуту при Нагрузке 3, изменение 10 галлонов в минуту (или 6,4 процента) от минимального до максимального расхода. Значения давления и расхода приведены в Таблице 1.

Таблица 1. Распределение давления и расхода в системе прямого возврата.

На рисунке 4 показаны расчеты для идентичной системы за исключением дополнительной длины трубопровода на возвратном коллекторе для создания системы обратного возврата.

Рисунок 4. Расчетная система обратного возврата. Насос рассчитан на 450 галлонов в минуту

Как и в случае с системой прямого возврата, давление на входе для каждой нагрузки уменьшается по мере удаления нагрузки от насоса. Однако, когда возвратный коллектор подключен к Нагрузке 3, давление на выходе уменьшается от Нагрузки 1 до Нагрузки 3 (в противоположность системе прямого возврата). Это вызывает меньшее изменение дифференциального давления для каждой нагрузки в системе. Собственный баланс этой системы обратного возврата дает изменение расхода в 4 раза.4 галлона в минуту, или всего 2,9 процента. В таблице 2 приведены данные о распределении давления и расхода в системе обратного возврата.

Таблица 2. Распределение давления и расхода в системе обратного возврата.

Следует отметить несколько дополнительных моментов относительно результатов расчетов для двух систем. Поскольку для системы обратного возврата требуется дополнительная длина трубы, равная по крайней мере длине возвратного коллектора, возникает дополнительная потеря напора, которую необходимо преодолеть за счет напора насоса. Для этого требуется, чтобы общий напор насоса в системе обратного возврата был выше, чем в системе прямого возврата (147.9 футов против 129,7 футов в этом примере). Наряду с дополнительными капитальными затратами на дополнительные трубопроводы, увеличенный напор насоса приводит к более высоким эксплуатационным расходам и может потребоваться насос и двигатель большего размера для удовлетворения требований системы.

Кроме того, увеличенный напор насоса приводит к более высокому давлению нагнетания, что может повлиять на выбор материала трубы или спецификации, а также на капитальные затраты на трубопровод.

Преимущества сбалансированной по своей сути системы могут перевесить дополнительные затраты, которые могут возникнуть.В зависимости от потребности в точном управлении потоком для каждой нагрузки можно спроектировать систему без дорогостоящих регулирующих клапанов и исключить связанные с ними контроллеры, проводку, пневматические трубки и другие вспомогательные приборы. Проведите углубленный анализ затрат, чтобы определить лучшее решение для любого конкретного приложения.

Чтобы прочитать больше столбцов «Улучшение насосной системы», щелкните здесь.

Обратный трубопровод, который был подающим

Опубликовано: 27 июля 2017 г. — Дэн Фоли

Категории: Горячая вода

Отопительный бизнес может вас унизить.После более чем 25 лет обслуживания всех типов систем отопления и охлаждения мне удалось решить самые сложные проблемы обслуживания. Мне стало казаться, что я кое-что знаю об этих системах. Каждую осень я помогаю своей команде с проблемами. Кажется, я всегда сталкиваюсь с тем, что заставляет меня понять, что мне еще многому нужно научиться. Я понял, что самоуспокоенность и поспешные выводы приводят к обратным звонкам.

Пару лет назад позвонил клиент с проблемной работой.Подрядчик с благими намерениями установил безбаковый водонагреватель для обогрева помещений и горячей воды. Хотя он, по крайней мере, изолировал горячую воду от тепла помещения с помощью теплообменника, этот неправильно примененный продукт не оправдал ожиданий клиента и претерпел многочисленные поломки.

Клиент принял мою рекомендацию, и мы установили конденсационный газовый котел Triangle Tube Excellence со встроенным баком ГВС. Эта система была установлена ​​в старинном доме из округа Колумбия 1920-х годов с английской квартирой на цокольном этаже.В этой подвальной квартире было мало места; Было выбрано Excellence, так как оно помещалось в тесном механическом шкафу сразу на кухне (см. фото 1).

Система хорошо проработала первую зиму; жалоб и проблем с обслуживанием не было. Этой осенью, во время второй зимы, клиент позвонил и пожаловался, что радиаторы на первом и втором этажах горячие, а температура в помещении превышает заданное значение. Подвал находится в отдельной зоне, независимой от двух верхних этажей.

Я приехал и проверил термостат основного пола. Радиаторы были теплые, термостат был установлен на 70º, а фактическая температура составляла 72º. Старые системы гравитационного преобразования с чугунными радиаторами могут накапливать много энергии. Перерегулирование на пару градусов не показалось чрезмерным. Я надеялся, что это послужило причиной жалобы. Надежда, как правило, не лучшая стратегия устранения неполадок — по уважительной причине; это оказалось не причиной.

Я пошел в подвал и заметил, что там очень тепло.Термостат был установлен на 75º; Фактически температура была 75º. Радиаторы все еще были горячими после последнего цикла, но котел был выключен, а клапаны обеих зон были закрыты. Я проверил главный термостат пола и управление клапаном зоны Taco ZVC, и оба проверили. Я также проверил оба зонных клапана.

Все проверил ОК, чесал затылок. Единственное, что я мог предположить, это то, что зонный клапан не закрывается полностью или что на седле клапана застрял кусочек песка или припоя, не позволяя ему полностью закрываться.Я заменил оба зонных клапана, объявил систему «исправной» и пошел своим путем.

На следующее утро позвонил раздраженный клиент, чтобы сообщить, что это не только не исправлено, но и стало хуже, чем когда-либо. Это была одна из первых холодных ночей с температурой ниже 20 градусов, поэтому я знал, что котел работал большую часть ночи. Обратные звонки — это хуже всего, потому что их нельзя отложить на день или два. Вы просто были там, а проблема все еще существует: вы должны немедленно туда отправиться.

Я очистил свое расписание и сел в D.C. Пробки в час пик до 395, чтобы прибыть к дому и встретить клиента, который дважды уходил с работы, чтобы впустить меня. На этот раз на первом этаже было 74º, а термостат был установлен на 70º. Радиаторы были очень теплыми, но не горячими. Опять же, в подвале была сауна с термостатом, установленным на 75º, и очень горячими на ощупь радиаторами.

Зона подвала звонила, а клапан зоны был открыт. Зона основного пола была отключена: я подтвердил, что клапан зоны был закрыт и что трубопровод непосредственно после клапана зоны был холодным.Клапан определенно не пропускал поток, когда он был закрыт. Я не понимал, что вызывает фантомный поток через радиаторы основного пола.

Что было причиной этой проблемы? Эта система проработала больше года без проблем. Что привело к внезапному возникновению этой проблемы? Я решил притормозить, проанализировать ситуацию и задать несколько вопросов.

Что изменилось? Поговорив с клиентом, я получил одну подсказку. Подвальную квартиру прошлой зимой не снимали, поэтому термостат был установлен на 60º.Только этой осенью квартиру сняли, и новый жилец любил поддерживать ее в тепле.

Еще одна подсказка: часть трубопровода была обнажена в подвале. Это было преобразование старой гравитационной системы, и большая 2-дюймовая стальная магистраль была доступна под потолком подвала. Радиаторы в подвале были добавлены позже и окаймлены медью диаметром 3/4 дюйма. Трубопровод зоны основного этажа у котла был прохладным, но в 10 футах от электросети было очень тепло. Это противоречило логике. Что происходило?

Я обрисовал и пометил все трубопроводы.Когда я отмечал возвращения с основного этажа, я заметил, что они были очень горячими. Как это могло произойти? Отследил подачу и возврат от радиатора подвала. Они были горячими, потому что эта зона все еще звонила. Ответвление подвала в ответвление с основного этажа, как показано на Рисунке 1 и Фото 2. Этот тройник находился примерно в 12 футах от котла.

Когда поток достигал этого тройника, он проходил через тройник и поднимался вверх через радиаторы основного пола.Поскольку они были соединены 2-дюймовыми трубами из черной стали, сопротивление потоку было очень небольшим. Тройник, соединяющий две питающие сети вместе, действовал как кроссовер, питая остальные радиаторы. Тайна раскрыта. Хотя этого обратного потока было немного, но его хватило, чтобы прогреть радиаторы и перегреть пространство. Мы вернулись и врезали два обратных клапана, устранив обратный поток и решив проблему. Этот обратный поток через возвратную магистраль существовал с тех пор, как мы установили котел, но он стал очевиден только тогда, когда жилец в подвале включил тепло.

Всегда стоит замедлиться и подумать логически, а не цепляться за проблемы или угадывать причину. Улики есть, а причины очевидны, если вы потратите время на анализ фактов. Я не сделал этого в свою первую поездку, и это стоило мне перезвона и раздраженного клиента.

Дэн Фоли — президент и владелец компании Foley Mechanical, Inc., расположенной в Лортоне, штат Вирджиния. (www.foleymechanical.com). FMI специализируется на излучающих, водяных и паровых системах, а также на механических системах для больших домов по индивидуальному заказу.

Использование большого перепада температур для повышения эффективности систем отопления

Как можно добиться максимальной эффективности при большом перепаде температур?

Стремление к максимальной эффективности конденсационных котельных систем является одним из факторов, определяющих потребность в более широком диапазоне температур.

Тревор Штрук объясняет,

«Большая разница температур подачи / возврата традиционно была резервом для больших стальных котлов с высоким содержанием воды, но не способных к конденсации.Теперь специалисты по спецификациям и консультанты хотят получить эту возможность, а также все преимущества, связанные с небольшими конденсационными котлами — полностью регулируемое с лучшим диапазоном регулирования, более высокую эффективность работы, низкие выбросы NOx, быстрое реагирование и соответствие правительственному законодательству ».

Как широкий перепад температур может снизить затраты на систему отопления?

Разработка системы, работающей с более низким расходом, может дать ряд преимуществ как установщику, так и конечному пользователю / владельцу.

Более низкие скорости потока подходят для труб меньшего диаметра. Трубы меньшего размера дешевле покупать, их легче устанавливать, и они будут тратить меньше энергии, поскольку они имеют более низкий уровень тепловыделения из-за меньшей площади поверхности.

Водосодержание системы отопления также будет ниже, что даст прямую экономию на дозировании химикатов и ингибиторов. При скорости дозирования, как правило, 1%, дозирование системы будет стоить меньше, и ее будет быстрее вводить как на этапе установки, так и при текущем обслуживании и повторном дозировании.

Как большой перепад температур снижает потери давления?

Некоторые современные конденсационные котлы могут иметь довольно значительные потери давления при работе с узким перепадом температур. При работе с более широким перепадом температуры и более низким расходом можно уменьшить потерю давления, что окажет существенное влияние на размер насоса.

Пример — конденсационный котел 250 кВт

  • Работа при дельте t 11 ° C с расходом 5.4 л / сек будут иметь потерю давления 1300 мбар.
  • При работе при дельте t 30 ° C и расходе 2 л / сек потеря давления составит всего 180 мбар.

Понижение более чем на 1100 мбар?

Это дает возможность сэкономить на выборе размера циркуляционного насоса. Поскольку меньшие насосы намного дешевле купить, это может дать экономию более 2000 фунтов стерлингов (исходя из прейскурантной цены циркуляционных насосов для этого примера).

Комментарий Тревора,

« Стоимость насосов приобрела особую важность после введения в действие Директивы по энергетическим продуктам (ErP).С января 2013 года влияние ErP привело к тому, что циркуляционные насосы стали работать с регулируемой скоростью, а это означает, что они будут работать только настолько быстро, насколько это необходимо, а не насосы с фиксированной скоростью, которые все время работают с максимальной производительностью. Насосы, соответствующие стандарту ErP, более энергоэффективны, но также более сложны и, следовательно, более дороги.

Возвратная труба циркуляции горячей воды

Возвратная циркуляционная труба иногда предусмотрена в системе горячего водоснабжения, где желательно, чтобы горячая вода постоянно подавалась на арматуру.Обычно для систем, в которых расстояние от водонагревателя до приборов потребления превышает 25-30 м .

Время достижения горячей водой приспособления без циркуляционного насоса

  • 1 галлонов США в минуту = 0,0630 л / сек
  • 1 фут = 0,305 м

Циркуляционный насос горячей воды

A труба меньшего размера со встроенным насосом подключается к точке, близкой к самому дальнему приспособлению, и к точке, близкой к водонагревателю.Насос может работать непрерывно или периодически, обеспечивая циркуляцию воды, достаточной для поддержания падения температуры в трубопроводе при низком или нулевом потреблении в допустимых пределах.

Требуемый расход циркулирующей воды можно рассчитать

Q = q / (ρ c p dt) (1)

где

Q = производительность насоса (м 3 / с)

q = потери тепла из трубопровода (Вт)

ρ = плотность воды (кг / м 3 ) (988 кг / м 3 при 50 o C)

c p = удельная теплоемкость воды (Дж / кг o C) (4182 Дж / кг o C при 50 o C)

dt = перепад температуры ( o C)

Типичные потери тепла из изолированного трубопровода находятся в диапазоне 30 — 60 Вт / м.Допустимый перепад температуры может составлять 10 o ° C .

Пример — Требуемый объем циркуляции в возвратном трубопроводе горячей воды

Длина трубопровода, включая циркуляционный трубопровод, составляет 100 м . При температуре воды 50 o ° C средняя удельная тепловая потеря из трубопровода оценивается в 30 Вт / м. Суммарные потери тепла по всему трубопроводу можно рассчитать как

q = (100 м) (30 Вт / м)

= 3000 Вт

Требуемый расход воды для ограничения падения температуры до 10 o C можно рассчитать как

Q = (3000 Вт) / (( 988 кг / м 3 ) ( 4182 Дж / кг o C ) (10 o C) )

= 7.2 10 -5 м 3 / с

= ( 7,2 10 -5 м 3 / с) (1000 л / м 3 )

= 0,072 л / s

Проектирование котельных систем с двойным обратным потоком

Когда дело доходит до эффективности системы горячего водоснабжения, большая часть дискуссий, кажется, сосредоточена на спецификациях, связанных с котлами и водонагревателями. Для достижения максимальной операционной эффективности инженеры, специализирующиеся на консультациях, а также владельцы и менеджеры объектов должны также учитывать общий дизайн системы.Использование двойного возврата при настройке системы горячего водоснабжения может привести к повышению эффективности на 8 процентов по сравнению с более традиционными конструкциями с одним возвратным трубопроводом, обычно используемыми на объектах, что помогает снизить эксплуатационные расходы.

Преимущества конденсационных и модулирующих котлов хорошо известны в отрасли. Модулирующая способность этих агрегатов, которые были представлены на рынке более 25 лет назад, с течением времени была улучшена до такой степени, что некоторые коммерческие котлы могут достигать высоких скоростей отклонения горелки 15: 1 или более, а опубликованные рейтинги эффективности составляют 95 с лишним процентов.Однако на практике фактическая производительность не всегда соответствует ожидаемым цифрам. Использование двойной доходности может помочь выполнить обещание опубликованных рейтингов в течение года.

Системы двойного возврата

Двойной возврат позволяет инженерам в полной мере использовать преимущества котлов премиум-класса, поскольку они позволяют спроектировать наиболее эффективную систему. Отдельный трубопровод для более холодной возвратной воды повышает тепловой КПД всей системы и продлевает часы работы в конденсационном режиме. Это приводит к значительной экономии энергии и снижению эксплуатационных расходов.

Эти преимущества реализованы, потому что двойной возврат преодолевает ограничения традиционных котлов с одинарным возвратом. Большинство стандартных гидравлических систем смешивают потоки из разных контуров, что снижает производительность системы конденсационного котла. Использование такого обычного устройства ограничивает инженеров в разработке общих приложений, которые принудительно смешивают горячую и холодную воду. Такой подход снижает эффективность системы, поскольку зона конденсации теплообменника меньше и менее эффективна.

Высокоэффективный котел с двойным возвратом позволяет инженерам использовать преимущества различных нагрузок, характерных для конкретного объекта, и разрабатывать индивидуальную систему для оптимизации работы.

Концепция двойного возврата проста: сочетание жаротрубного теплообменника, сконструированного для работы в режиме конденсации и максимальной теплопередачи, и высококлассных пожарных трубок, используется для подключения холодного (менее 130 ° F) возврата к нижнее впускное соединение и подсоедините высокотемпературный (выше 140 ° F) возврат к верхнему впускному патрубку.Таким образом достигается истинная производительность конденсации даже в приложениях с различными конфигурациями потока между нижним и верхним впускными патрубками. Результатом является большая зона конденсации, которая увеличивает КПД котла (Рисунок 1).

РИСУНОК 1. Котлы имеют более высокий КПД в системах с двойным возвратом. РИСУНОК 2. Котлы с двойным возвратом имеют уникальную конструкцию перегородки. Котлы

, рассчитанные на двойной возврат, имеют уникальную конструкцию перегородки. Нижняя перегородка агрегатов должна обеспечивать поток через пучок труб для оптимальной теплопередачи, а также изолировать зону с более низкой температурой возврата от зоны с более высокой температурой возврата внутри теплообменника (Рисунок 2).Это гарантирует, что нижняя часть теплообменника обрабатывает только более холодную возвратную воду, что способствует большей конденсации. В результате повышается эффективность до того, как вода будет смешана с возвратной водой с более высокой температурой на другой стороне перегородки.

Заявки с двойным возвратом

Двойной возврат идеально подходит для систем с несколькими температурами возвратной воды, которые по своей природе имеют более высокие температурные перепады с более низкими температурами возврата. Они также полезны в приложениях, включая комбинированные системы.Комбинированные системы, использующие типичные более низкие температуры обратки с высокоэффективными водонагревателями косвенного нагрева, обеспечивают экономичное решение для эффективного отопления помещений и горячего водоснабжения. На Рисунке 3 показана типичная комбинированная система водонагреватель / бойлер с двойным возвратом. Экономия энергии за счет этих конфигураций может снизить годовые эксплуатационные расходы на тысячи долларов. Кроме того, двойной возврат может сэкономить деньги на лучистом подогреве пола, подогреве бассейна, таянии снега, предварительном подогреве воздуха и дополнительном тепле для систем тепловых насосов.

РИСУНОК 3. Комбинированная система с двойным возвратом.

Одним из примеров того, где можно увидеть преимущества двойного возврата, является комбинированная система нагрева воды для бытового потребления, которая имеет высокотемпературный обогрев помещения, а также горячее водоснабжение и обогрев бассейна. Температуры обратки из высокотемпературного контура достаточно высоки для обеспечения теплом как контура горячего водоснабжения, использующего высокоэффективные водонагреватели, так и контура подогрева бассейна. Возвратные трубопроводы контура горячего водоснабжения и обогрева бассейна с еще более низкими температурами подключаются к низкотемпературным соединениям котлов для дополнительного повышения эффективности.

Гибкость установки

Системы горячего водоснабжения с двойным возвратом также обеспечивают гибкость установки. Ограничений по минимальной температуре обратного потока, как в некоторых обычных однотрубных системах, нет, и возможны конфигурации с несколькими потоками.

Еще одним преимуществом установки является отсутствие требований к минимальному потоку для первичного низкотемпературного возврата, если минимальные требования к потоку для моделей котлов выполняются через вторичный высокотемпературный возврат.Если разделение потока между высокотемпературным и низкотемпературным возвратом является постоянным, общий расход должен быть не меньше минимального расхода, требуемого для моделей котлов. В системах с двойным обратным потоком инженеры должны помнить об установке обратных клапанов на обоих обратных соединениях, чтобы предотвратить перекрестный поток между обратными линиями, если в одном из обратных соединений нет потока.

O

2 — Технология обрезки

Для повышения эффективности до 2%, технология подстройки кислорода (O 2 -) может быть интегрирована в котлы с системой двойного возврата.Часть усовершенствованных систем управления сгоранием, дифферент O 2 автоматически поддерживает точное соотношение воздух-топливо для максимальной эффективности, низкого уровня выбросов и максимальной надежности. Это необходимо, потому что котлы, работающие на газе и жидком топливе, часто отклоняются от идеального соотношения воздух-топливо из-за таких изменений окружающей среды, как влажность, атмосферное давление, содержание пыли в фильтре и содержание энергии подаваемого газа. Результатом является нестабильное горение, повышенные выбросы и возможные потери пламени.

O 2 trim контролирует фактическое состояние котла и регулирует процесс горения в установке для обеспечения работы системы на оптимальных уровнях O 2 и максимальной эффективности системы.Слишком низкие уровни O 2 могут вызвать нестабильное горение, что приведет к неисправностям и увеличит внеплановое обслуживание. Регулировка O 2 автоматически изменяет скорость нагнетателя котла для увеличения O 2 и возврата к оптимальным уровням.

В случаях, когда уровни O 2 слишком высоки, точка росы будет ниже, и в бойлере будет меньше конденсации, как показано на Рисунке 4 (на основе Руководства ASHRAE 2013 — Основные принципы, Глава 28, Рисунок 4). Регулировка O 2 регулирует скорость вентилятора котла для уменьшения уровней O 2 , чтобы создать большую зону конденсации и максимизировать эффективность.

РИСУНОК 4. Чем выше уровень O2, тем ниже точка росы и тем меньше вероятность конденсации в бойлере.

Заключение

Инженеры, владельцы объектов и руководители операций имеют общую цель — максимальную эффективность систем горячего водоснабжения. Для достижения этой цели, которая приносит с собой значительную финансовую экономию из-за более низких эксплуатационных расходов, им следует рассмотреть возможность двойного возврата и обрезки O 2 . И то, и другое помогает максимизировать производительность конденсационных котлов с большим диапазоном регулирования и может быть частью нового поколения систем, которые лучше подходят для окружающей среды и чистой прибыли организации.

Нери Д. Эрнандес, LEED AP BD + C, менеджер по продуктам и решениям по коммерческим котлам в AERCO International. Он имеет степень бакалавра машиностроения и степень магистра инженерного менеджмента Технологического института Стивенса.

Вы нашли эту статью полезной? Присылайте комментарии и предложения исполнительному редактору Скотту Арнольду по адресу [email protected] .

Использование более низких температур подачи и обратки в системе централизованного теплоснабжения

В схемах централизованного теплоснабжения используются подземные предварительно изолированные трубы для подключения различных зданий на участке к централизованному источнику тепла.Предварительно изолированные трубы предназначены для поддержания температуры воды во время транспортировки (предотвращение потерь тепла для повышения энергоэффективности). При планировании проекта централизованного теплоснабжения у специалиста часто будет выбор: спуститься по стальной трубе или по гибкой пластиковой трубе. В этой короткой статье мы рассмотрим некоторые рекомендации, содержащиеся в руководстве CIBSE 2015 года « Тепловые сети: Свод правил для Великобритании », которые относятся к этому ключевому решению с точки зрения энергоэффективности и стоимости проекта.

Традиционно в схемах централизованного теплоснабжения в Великобритании использовались стальные трубопроводы для обеспечения высоких рабочих температур, необходимых для компенсации потерь тепла на больших расстояниях. Однако пластиковые трубы, несмотря на отсутствие очень высокой рабочей температуры стальных труб, начинают становиться очень популярными благодаря их улучшенным характеристикам потока и превосходным изоляционным характеристикам, позволяющим использовать более низкие температуры как у источника тепла, так и для подачи и возврата в трубопроводе. трубы — повышение энергоэффективности всей системы.

Руководство CIBSE содержит некоторую очень полезную информацию по этой теме, включая следующие ключевые соображения при проектировании на стр. 5 — « Для заданной температуры подачи низкая расчетная температура обратки снизит пиковый объемный расход, что приведет к уменьшению размеров труб и снижению затрат. Поддержание низких температур обратки в условиях частичной нагрузки важно для снижения тепловых потерь и энергии перекачки. Проектирование для более низких рабочих температур приведет к более высокой эффективности с некоторыми типами источников тепла, например.грамм. тепловые насосы ».

В руководстве CIBSE также говорится (на стр. 24), что « В целом полимерные трубы, по крайней мере, для меньших диаметров, будут иметь более низкие затраты на установку из-за большей гибкости и из-за того, что требуется меньше соединений. Другой вариант для проектировщика — использование двухтрубных систем, которые обеспечивают меньшие тепловые потери и меньшие затраты на установку. ».

Как можно видеть, пластиковые трубы имеют большие преимущества для проектов централизованного теплоснабжения с точки зрения низких расчетных температур (повышение эффективности) и затрат.В Mibec мы предлагаем широкий ассортимент предварительно изолированных труб от ведущих производителей, таких как Rehau, Microflex или наши собственные трубы Mibec DHP, в соответствии с вашими требованиями. Предварительно изолированные трубы чрезвычайно гибкие и легкие, что позволяет быстро их устанавливать и легко преодолевать препятствия (например, деревья и существующие здания) на месте или обходить их. Благодаря гибкости труб они поставляются в бухтах (до 250 метров для некоторых размеров), что упрощает транспортировку, доставку и хранение на месте.Труба также проста в обращении; Установщики могут выкатывать трубу прямо в заранее подготовленную траншею прямо из змеевика. Возможность удерживать трубу в виде единого длинного гибкого элемента имеет много преимуществ с точки зрения ограничения количества требуемых соединений и соединений, что позволяет сэкономить время, средства и снизить вероятность любых утечек в будущем. Уменьшение количества стыков также будет означать меньшее количество обрезков труб и меньшее количество фитингов, которые нужно изолировать по отдельности, чтобы сохранить характеристики потери тепла. Предварительно изолированные трубы также очень легко резать (для этого требуется только обычная ручная пила), а поскольку трубы обладают такой высокой степенью гибкости, легко выполнять соединения в здании.

Мы предлагаем полную бесплатную услугу по спецификациям, охватывающую всю Великобританию, разработанную для поддержки архитекторов, специалистов по спецификациям или подрядчиков, помогая вам выбрать правильное решение для централизованного теплоснабжения, отвечающее вашим потребностям. Пожалуйста, напишите или позвоните в нашу службу поддержки по телефону 01948 661639, где один из наших квалифицированных консультантов будет рад вам помочь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *