Обозначение мощность тока: Определение мощности электрического тока: обозначение и единицы измерения

Содержание

Мощность переменного тока. Мощность тока через катушку, резистор, конденсатор

 

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.

Переменный ток несёт энергию. Поэтому крайне важным является вопрос о мощности в цепи переменного тока.

Пусть и — мгновенные значение напряжения и силы тока на данном участке цепи. Возьмём малый интервал времени — настолько малый, что напряжение и ток не успеют за это время сколько-нибудь измениться; иными словами, величины и можно считать постоянными в течение интервала .

Пусть за время через наш участок прошёл заряд (в соответствии с правилом выбора знака для силы тока заряд считается положительным, если он переносится в положительном направлении, и отрицательным в противном случае). Электрическое поле движущихся зарядов совершило при этом работу

Мощность тока — это отношение работы электрического поля ко времени, за которое эта работа совершена:

(1)

Точно такую же формулу мы получили в своё время для постоянного тока. Но в данном случае мощность зависит от времени, совершая колебания вместе током и напряжением; поэтому величина (1) называется ещё мгновенной мощностью.

Из-за наличия сдвига фаз сила тока и напряжение на участке не обязаны совпадать по знаку (например, может случиться так, что напряжение положительно, а сила тока отрицательна, или наоборот). Соответственно, мощность может быть как положительной, так и отрицательной. Рассмотрим чуть подробнее оба этих случая.

1. Мощность положительна: . Напряжение и сила тока имеют одинаковые знаки. Это означает, что направление тока совпадает с направлением электрического поля зарядов, образующих ток. В таком случае энергия участка возрастает: она поступает на данный участок из внешней цепи

(например, конденсатор заряжается).

2. Мощность отрицательна: . Напряжение и сила тока имеют разные знаки. Стало быть, ток течёт против поля движущихся зарядов, образующих этот самый ток.

Как такое может случиться? Очень просто: электрическое поле, возникающее на участке, как бы «перевешивает» поле движущихся зарядов и «продавливает» ток против этого поля. В таком случае энергия участка убывает: участок отдаёт энергию во внешнюю цепь (например, конденсатор разряжается).

Если вы не вполне поняли, о чём только что шла речь, не переживайте — дальше будут конкретные примеры, на которых вы всё и увидите.

 

Мощность тока через резистор

 

Пусть переменный ток протекает через резистор сопротивлением . Напряжение на резисторе, как нам известно, колеблется в фазе с током:

Поэтому для мгновенной мощности получаем:

(2)

График зависимости мощности (2) от времени представлен на рис. 1. Мы видим, что мощность всё время неотрицательна — резистор забирает энергию из цепи, но не возвращает её обратно в цепь.

Рис. 1. Мощность переменного тока через резистор

Максимальное значение нашей мощности связано с амплитудами тока и напряжения привычными формулами:

На практике, однако, интерес представляет не максимальная, а средняя мощность тока. Это и понятно. Возьмите, например, обычную лампочку, которая горит у вас дома. По ней течёт ток частотой Гц, т. е. за секунду совершается колебаний силы тока и напряжения. Ясно, что за достаточно продолжительное время на лампочке выделяется некоторая средняя мощность, значение которой находится где-то между и . Где же именно?

Посмотрите ещё раз внимательно на рис. 1. Не возникает ли у вас интуитивное ощущение, что средняя мощность соответствует «середине» нашей синусоиды и принимает поэтому значение ?

Это ощущение совершенно верное! Так оно и есть. Разумеется, можно дать математически строгое определение среднего значения функции (в виде некоторого интеграла) и подтвердить нашу догадку прямым вычислением, но нам это не нужно. Достаточно интуитивного понимания простого и важного факта:

среднее значение квадрата синуса (или косинуса) за период равно .

Этот факт иллюстрируется рисунком 2.

Рис. 2. Среднее значение квадрата синуса равно

Итак, для среднего значения мощности тока на резисторе имеем:

(3)

В связи с этими формулами вводятся так называемые действующие (или эффективные) значения напряжения и силы тока (на самом деле это есть не что иное, как средние квадратические значения напряжения и тока. Такое у нас уже встречалось: средняя квадратическая скорость молекул идеального газа (листок «Уравнение состояния идеального газа»):

(4)

Формулы (3), записанные через действующие значения, полностью аналогичны соответствующим формулам для постоянного тока:

Поэтому если вы возьмёте лампочку, подключите её сначала к источнику постоянного напряжения , а затем к источнику переменного напряжения с таким же действующим значением , то в обоих случаях лампочка будет гореть одинаково ярко.

Действующие значения (4) чрезвычайно важны для практики. Оказывается, вольтметры и амперметры переменного тока показывают именно действующие значения (так уж они устроены). Знайте также, что пресловутые вольт из розетки — это действующее значение напряжения бытовой электросети.

 

Мощность тока через конденсатор

 

Пусть на конденсатор подано переменное напряжение . Как мы знаем, ток через конденсатор опережает по фазе напряжение на :

Для мгновенной мощности получаем:

График зависимости мгновенной мощности от времени представлен на рис. 3.

Рис. 3. Мощность переменного тока через конденсатор

Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.

Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний (рис. 4).

Рис. 4. Напряжение на конденсаторе и сила тока через него

Рассмотрим последовательно все четыре четверти периода.

1. Первая четверть, . Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.

Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.

2. Вторая четверть, . Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.

Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).

3. Третья четверть, . Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.

Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.

4. Четвёртая четверть, . Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.

Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.

Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.

 

Мощность тока через катушку

 

Пусть на катушку подано переменное напряжение . Ток через катушку отстаёт по фазе от напряжения на :

Для мгновенной мощности получаем:

Снова средняя мощность оказывается равной нулю. Причины этого, в общем-то, те же, что и в случае с конденсатором. Рассмотрим графики напряжения и силы тока через катушку за период (рис. 5).

Рис. 5. Напряжение на катушке и сила тока через неё

Мы видим, что в течение второй и четвёртой четвертей периода энергия поступает в катушку из внешней цепи. В самом деле, напряжение и сила тока имеют одинаковые знаки, сила тока возрастает по модулю; для создания тока внешнее электрическое поле совершает работу против вихревого электрического поля, и эта работа идёт на увеличение энергии магнитного поля катушки.

В первой и третьей четвертях периода напряжение и сила тока имеют разные знаки: катушка возвращает энергию в цепь. Вихревое электрическое поле, поддерживающее убывающий ток, двигает заряды против внешнего электрического поля и совершает тем самым положительную работу. А за счёт чего совершается эта работа? За счёт энергии, накопленной ранее в катушке.

Таким образом, энергия, запасаемая в катушке за одну четверть периода, полностью возвращается в цепь в ходе следующей четверти. Поэтому средняя мощность, потребляемая катушкой, оказывается равной нулю.

 

Мощность тока на произвольном участке

 

Теперь рассмотрим самый общий случай. Пусть имеется произвольный участок цепи — он может содержать резисторы, конденсаторы, катушки…На этот участок подано переменное напряжение .

Как мы знаем из предыдущего листка «Переменный ток. 2», между напряжением и силой тока на данном участке имеется некоторый сдвиг фаз . Мы записывали это так:

Тогда для мгновенной мощности имеем:

(5)

Теперь нам хотелось бы определить, чему равна средняя мощность. Для этого мы преобразуем выражение (5), используя формулу:

В результате получим:

(6)

Но среднее значение величины равно нулю! Поэтому средняя мощность оказывается равной:

(7)

Данную формулу можно записать с помощью действующих значений (4) напряжения и силы тока:

Формула (7) охватывает все три рассмотренные выше ситуации. В случае резистора имеем , и мы приходим к формуле (3). Для конденсатора и катушки , и средняя мощность равна нулю.

Кроме того, формула (7) даёт представление о весьма общей проблеме, связанной с передачей электроэнергии. Чрезвычайно важно, чтобы у потребителя был как можно ближе к единице. Иначе потребитель начнёт возвращать значительную часть энергии назад в сеть (что ему совсем невыгодно), и к тому же возвращаемая энергия будет безвозвратно расходоваться на нагревание проводов и других элементов цепи.

С этой проблемой приходится сталкиваться разработчикам электрических схем, содержащих электродвигатели. Обмотки электродвигателей обладают большими индуктивностями, и возникает ситуация, близкая к «чистой» катушке. Чтобы избежать бесполезного циркулирования энергии по сети, в цепь включают дополнительные элементы, сдвигающие фазу — например, так называемые компенсирующие конденсаторы.

чем отличаются и что это такое, обозначение на схемах

В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

Что такое электрический ток и напряжение

 

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Источники электрического тока

Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

Преобразование переменного тока в постоянный

Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров.  Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам.  В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

 

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Обозначения на электроприборах и схемах

Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями. Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

Работа и мощность электрического тока. Закон Джоуля-Ленца – FIZI4KA

1. Электрический ток, проходя по цепи, производит разные действия: тепловое, механическое, химическое, магнитное. При этом электрическое поле совершает работу, и электрическая энергия превращается в другие виды энергии: во внутреннюю, механическую, энергию магнитного поля и пр.

Как было показано, напряжение ​\( (U) \)​ на участке цепи равно отношению работы ​\( (F) \)​, совершаемой при перемещении электрического заряда ​\( (q) \)​ на этом участке, к заряду: ​\( U=A/q \)​. 2Rt \)​.

Количество теплоты, выделяющееся при прохождении тока но проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени.

Этот закон называют законом Джоуля-Ленца.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

3. Сопротивления резистор ​\( R_1 \)​ в четыре раза меньше сопротивления резистора ​\( R_2 \)​. Работа тока в резисторе 2

1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1

4. Сопротивление резистора ​\( R_1 \)​ в 3 раза больше сопротивления резистора ​\( R_2 \)​. Количество теплоты, которое выделится в резисторе 1

1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2

5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если

1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока ​\( A_1 \)​ и ​\( A_2 \)​ в этих проводниках за одно и то же время.

1) ​\( A_1=A_2 \)​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \)​ и ​\( A_2 \) в этих проводниках за одно и то же время.

1) ​\( A_1=A_2 \)​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то

А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.

Верным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?

1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А

10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?

1) 10000 с
2) 2000 с
3) 10 с
4) 2 с

11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока

ФОРМУЛЫ
1) ​\( \frac{q}{t} \)​
2) ​\( qU \)​
3) \( \frac{RS}{L} \)​
4) ​\( UI \)​
5) \( \frac{U}{I} \)​

Часть 2

13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?

Ответы

Работа и мощность электрического тока. Закон Джоуля-Ленца

3 (60%) 7 votes

Прописные истины для новичков. — Начинающим — Теория

Как рассчитать шунт для амперметра?
Почему, я намотал вторичную обмотку на 12 вольт, а блок питания у меня выдаёт 16 вольт?.
Как измерить, какую мощность выдаёт усилитель низкой частоты?
Такие вопросы порой часто возникают от новичков радиолюбителей. Кратко напомним им, чем нужно руководствоваться в своей практической деятельности.

Закон Ома.


Основным законом, которым руководствуются радиолюбители — является Закон Ома. .
Георг Симон ОМ
Georg Simon Ohm,  1787–1854
Немецкий физик. Родился в Эрлангене 16 марта в 1787 году (по другим источникам он родился в 1789-м). Окончил местный университет. Преподавал математику и естественные науки. В академических кругах его признали достаточно поздно. В 1849 году стал профессором Мюнхенского университета, хотя уже в 1827 году он опубликовал закон, который теперь носит его имя. Помимо электричества занимался акустикой и изучением человеческого слуха.
Георг Ом экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, на который не действуют сторонние силы), пропорционально напряжению U на концах проводника.
I = U/R, где R — электрическое сопротивление проводника.
Уравнение это выражает закон Ома для участка цепи (не содержащего источника тока). Формулировка этого закона следующая:
Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорционально его сопротивлению.
Единица электрического сопротивления системы СИ называется Ом в честь этого выдающегося ученого. Сопротивление проводника в 1 Ом будет в том случае, если при протекающем по нему токе в 1 Ампер, падение напряжения на нём будет 1 Вольт.
Так же при прохождении тока по проводнику, на нём выделяется мощность(он нагревается), и чем больше протекающий по нему ток, тем больше выделяемая на нём мощность.
Как Вы должны знать  U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока в Ваттах.
Вывод: поскольку электрическая мощность «P» в одинаковой степени зависит от тока «I» и от напряжения «U», то, следовательно, одну и ту же электрическую мощность можно получить либо при большом токе и малом напряжении, или же, наоборот, при большом напряжении и малом токе.
Из всего этого вытекают следующие формулы для расчётов тока, напряжения, сопротивления, мощности.
Величины, проставляемые в этих формулах; напряжение в вольтах, сопротивление в омах, ток в амперах, мощность в ваттах.

Последняя формула определяет мощность тока и выведена на основании практических опытов, проделанных в 1841 году Д. П. Джоулем и независимо от него в 1842 году, опытами Э. Х. Ленца. Называется Законом Джоуля — Ленца. Звучит так;

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка.

Для определения всех этих величин, есть очень интересная диаграмма (таблица), где отражены все эти формулы.
В центре искомые величины, а в секторах с соответствующими цветами — варианты решений в зависимости от известных величин.

Имеется ещё более упрощённая диаграмма для определения величин, исходя из закона Ома. Называется в простонародье — треугольник Ома.
Выглядит она следующим образом:

В этом треугольнике Ома, нужно закрыть искомую величину, и два других символа дадут формулу для ее вычисления.
Закон Ома также применяется ко всей цепи, но в несколько изменённой форме:

,
  • — ЭДС цепи,
  • I — сила тока в цепи,
  • R — сопротивление всех элементов цепи,
  • r — внутреннее сопротивление источника питания.

Закон Ома для полной цепи звучит так — Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

Электрические измерения.

Нарисуем простейшую электрическую цепь, состоящую из батареи «В» и нагрузки «R», и рассмотрим, как необходимо измерять протекающий по цепи ток, и напряжение на нагрузке.

Что бы измерить протекающий в цепи ток, необходимо в разрыв источника питания и нагрузки включить измерительный прибор (амперметр).
Для того, что бы на измеряемую цепь было как можно меньше влияний и для повышения точности измерения, амперметры изготавливают с очень малым внутренним сопротивлением, то есть если включить амперметр в разрыв проверяемой цепи, то он практически не добавит к измеряемой цепи дополнительного сопротивления, и протекающий по цепи ток практически не изменится, или уменьшится на очень незначительную величину не оказывающую значительного влияния на конечный результат измерения.
Поэтому категорически нельзя измерять «ток приходящий на нагрузку» путём подключения амперметра параллельно нагрузке, или непосредственно у источника питания (без нагрузки) и таким образом попытаться замерить выходной ток выдаваемый источником питания или осветительной сетью.
Это равносильно тому, что подключить параллельно нагрузке или источнику питания обычный провод. Попросту сказать — закоротить цепь.

Если источник питания обладает хорошей мощностью — будет очень сильный Б А Х !!! Последствия могут быть самыми разными, от выхода из строя измерительного прибора (амперметра), что обычно и случается, и до выбитых пробок (АЗС) в квартире и обесточивания помещения и возможного поражения током.

Для измерения напряжения на нагрузке необходимо, что бы подключаемый к ней вольтметр не шунтировал нагрузку и не оказывал заметного влияния на результат измерения. Для этого вольтметры изготавливают с очень высоким входным сопротивлением и их наоборот подключают параллельно измеряемой цепи. Благодаря высокому входному сопротивлению вольтметра — сопротивление измеряемой цепи практически не изменяется, или изменяется очень не значительно, не оказывая заметного влияния на результат измерения.

На рисунке выше показан порядок включения амперметра и вольтметра для измерения напряжения на нагрузке и протекающего через неё тока. Так же указана полярность подключения измерительных приборов в измеряемую цепь.

Постоянный и переменный ток.

Кратко напомню — постоянный ток (DC), это такой ток, который в течении определённого промежутка времени не изменяет своей величины и направления.
Переменный ток (AC) — это ток, который в течении определённого промежутка времени периодически изменяется как по величине, так и по направлению.

На рисунке выше, на графиках изображены диаграммы постоянного (а), и переменного (б) тока.
Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.
Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.
В течение одного периода своего изменения,ток дважды достигает максимального значения.
Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Действующее (эффективное) и амплитудное значение переменного синусоидального тока (напряжения).

Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Возникает вопрос, как же его измерять? Для его измерения и введено понятие — «Действующее (или эффективное) значение» переменного тока.

Что же такое действующее (или эффективное) и амплитудное значение переменного тока?
Как Вам попроще объяснить, чтобы было понятно.
Действующее (эффективное) значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время, выделяет такое же количество энергии.
То есть если к какой либо активной нагрузке (нагревательный элемент, лампа накаливания, резистор и т.д.) подключить переменный ток, который за определённый промежуток времени (например 10 секунд) выделит на активной нагрузке то-же количество энергии, тепла на нагревательном элементе, резисторе, или разогреет спираль лампы накаливания до точно такой же светоотдачи, что и постоянный ток какой-то определённой величины за тот же промежуток времени (тоже 10 секунд) — то тогда действующее (эффективное) значение такого переменного тока будет равняться величине постоянного тока.

Все электроизмерительные приборы (амперметры, вольтметры), отградуированы для измерения действующего значения синусоидального тока или напряжения.

Что такое «Амплитудное значение» переменного тока?
Если объяснять попроще, то это самое максимальное значение (величина) синусоидального тока на самом пике (максимуме) синусоиды.
Амплитудное значение переменного тока можно измерить электронно — лучевым осциллографом, так как все осциллографы откалиброваны на измерение амплитудных значений.

Поскольку действующее значение переменного синусоидального тока пропорционально квадратному корню из площади, то оно получается в 1,41 раза меньше его амплитудного значения.
Проще говоря — если измерить величину переменного тока (напряжения) электроизмерительными приборами, отградуированными для измерения переменного синусоидального тока (напряжения), то есть например замерить величину переменного напряжения на вторичной обмотке трансформатора, — то амплитудное значение напряжения на этой обмотке будет соответственно в 1,41 раз больше замеренного.
Это справедливо только для переменного синусоидального тока (напряжения).

Все конденсаторы в выпрямительных фильтрах соответственно заряжаются до величины амплитудного значения.

Можно посчитать, что при действующем напряжении сети 220 В, амплитудное его значение будет составлять 310 вольт (220 помножить на 1,41).

Отсюда вытекает, что если собрать выпрямитель переменного действующего напряжения 220 вольт, то конденсаторы фильтра необходимо применять на рабочее напряжение не менее чем на 350 вольт, так как они заряжаются до амплитудного (максимального) значения переменного напряжения, а ещё лучше не менее 400 вольт, для обеспечения надёжности работы выпрямителя.

Для действующего значения переменного синусоидального напряжения (тока) — справедливы формулы для расчётов сопротивлений, мощности, действующих токов и напряжений — приведённые выше в Законе Ома для постоянного тока.

Ответим на вопросы в начале статьи;

Как рассчитать шунт для амперметра?
Большинство отечественных измерительных головок для амперметров, рассчитываются на полное отклонение при подведении к ним напряжения в 75 мВ (0,075 вольта). У них на шкале имеется надпись «НШ — 75 мВ», или «Наружный шунт 75 мв», или что-то подобное.
Нам стало известно две величины, а именно — необходимый нам ток полного отклонения и напряжение полного отклонения измерительной головки.
Например, нам нужно рассчитать шунт на 20 ампер. По Закону Ома 0,075 делим на 20 = 0,00375 Ом.
Изготовить такой шунт можно из медной проволоки, посмотрев её удельное сопротивление по таблице ЗДЕСЬ . Только необходимо брать проволоку, диаметром желательно не менее 1,5 мм, так как шунт при большом токе будет греться, и показания прибора будет изменяться (при нагреве проволоки увеличится её внутреннее сопротивление).

Почему из 12 вольт переменного напряжения, стало около 16 вольт постоянного — надеюсь Вам стало понятно. У переменного напряжения 12 вольт (действующее его значение) — амплитудное значение будет в 1,41 раз больше, то есть 16,92 вольта, минус около вольта падение напряжения на диодах. В итоге получается около 16 вольт — до которых и заряжаются электролитические конденсаторы фильтра.

Как правильно измерить мощность УНЧ?
Давайте для начала вспомним теорию.
Выходная мощность усилителей НЧ измеряется на синусоидальном сигнале. У идеального двухтактного выходного каскада, максимальное амплитудное значение синусоидального сигнала на выходе может приблизиться к величине равной половине напряжения источника питания.
У каскада по мостовой схеме, выходное напряжение может приблизиться к величине напряжения источника питания.
Говоря другими словами, у автомобильной магнитолы при напряжении питания 13,5 вольт, для двухтактного выходного каскада максимальное выходное напряжение (синус) будет 6,5 вольт, а его действующее значение 4,6 вольта, для мостовой схемы соответственно 13 В. и 9,2 вольта.
Возьмём минимальную нагрузку для этих усилителей 2 Ома, соответственно максимальная выходная мощность (исходя из Закона Джоуля — Ленца) для первой магнитолы, которую она выдаст теоретически — будет 10,6 ватта, для второй — 42,3 ватта (это для нагрузки 2 Ома). На практике не более 10 и не более 40, или и того меньше. Для 4-х Ом соответственно ещё в два раза меньше. Я не говорю уже об искажениях, здесь мы просто измеряем максимальную выходную мощность.

В бытовых условиях измерять выходной сигнала усилителя (при подаче на вход синусоидального сигнала), лучше обычными «цешками» или бытовыми «цифровиками», так как они сразу измеряют действующее значение синусоидального сигнала. На выход усилителя лучше включать при замерах эквивалент нагрузки, то есть сопротивления с мощностью рассеивания, не менее максимально расчётной мощности усилителя, и с сопротивлением, равному сопротивлению предполагаемой нагрузки (это, что-бы не раздражать себя и соседей звуками во время замеров). Дальше, зная максимальное выходное напряжение и сопротивление нагрузки, рассчитываем мощность по вышеприведённым формулам, то есть напряжение в квадрате делённое на сопротивление нагрузки.
Так, что если Вы в магазине увидите подобный аппарат, и продавец Вас будет уверять, что на канал он выдаёт по 60-80 ватт — это развод, рекламный ход и т.д., если только для питания этого усилителя не применяется повышающий преобразователь.

 

Электрическая мощность — Википедия

Материал из Википедии — свободной энциклопедии

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Единицей измерения в Международной системе единиц (СИ) является ватт (русское обозначение: Вт, международное: W).

Мгновенная электрическая мощность

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A{\displaystyle A} в точку B{\displaystyle B}, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки A{\displaystyle A} в точку B{\displaystyle B}. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, — это работа в единицу времени. Введём обозначения:

U{\displaystyle U} — напряжение на участке A−B{\displaystyle A-B} (принимаем его постоянным на интервале Δt{\displaystyle \Delta t}),
Q{\displaystyle Q} — количество зарядов, прошедших от A{\displaystyle A} к B{\displaystyle B} за время Δt{\displaystyle \Delta t},
A{\displaystyle A} — работа, совершённая зарядом Q{\displaystyle Q} при движении по участку A−B{\displaystyle A-B},
P{\displaystyle P} — мощность.

Записывая вышеприведённые рассуждения, получаем:

PA−B=AΔt{\displaystyle P_{A-B}={\frac {A}{\Delta t}}}

Для единичного заряда на участке A−B{\displaystyle A-B}:

Pe(A−B)=UΔt{\displaystyle P_{e(A-B)}={\frac {U}{\Delta t}}}

Для всех зарядов:

PA−B=UΔt⋅Q=U⋅QΔt{\displaystyle P_{A-B}={\frac {U}{\Delta t}}\cdot {Q}={U}\cdot {\frac {Q}{\Delta t}}}

Поскольку ток есть электрический заряд, протекающий по проводнику в единицу времени, то есть I=QΔt{\displaystyle I={\frac {Q}{\Delta t}}} по определению, в результате получаем:

PA−B=U⋅I{\displaystyle P_{A-B}=U\cdot I}.

Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:

мгновенная электрическая мощность p(t){\displaystyle p(t)}, выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u(t){\displaystyle u(t)} и силы тока i(t){\displaystyle i(t)} на этом участке:

p(t)=u(t)⋅i(t). {2}}{R}}}.

Дифференциальные выражения для электрической мощности

Мощность, выделяемая в единице объёма, равна:

w=dPdV=E⋅j{\displaystyle w={\frac {dP}{dV}}=\mathbf {E} \cdot \mathbf {j} },

где E{\displaystyle \mathbf {E} }

Основные электрические величины и единицы их измерения

Рассмотрим основные электрические величины, которые мы изучаем сначала в школе, затем в средних и высших учебных заведениях. Все данные для удобства сведем в небольшую таблицу. После таблицы будут приведены определения отдельных величин, на случай возникновения каких-либо непониманий.

Величина Единица измерения в СИ Название электрической величины
q Кл — кулон заряд
R Ом – ом сопротивление
U В – вольт напряжение
I А – ампер Сила тока (электрический ток)
C Ф – фарад Емкость
L Гн — генри Индуктивность
sigma См — сименс Удельная электрическая проводимость
e0 8,85418781762039*10-12 Ф/м Электрическая постоянная
φ В – вольт Потенциал точки электрического поля
P Вт – ватт Мощность активная
Q Вар – вольт-ампер-реактивный Мощность реактивная
S Ва – вольт-ампер Мощность полная
f Гц — герц Частота

Существуют десятичные приставки, которые используются в названии величины и служат для упрощения описания. Самые распространенные из них: мега, мили, кило, нано, пико. В таблице приведены и остальные приставки, кроме названных.

Десятичный множитель Произношение Обозначение (русское/международное)
10-30 куэкто q
10-27 ронто r
10-24 иокто и/y
10-21 зепто з/z
10-18 атто a
10-15 фемто ф/f
10-12 пико п/p
10-9 нано н/n
10-6 микро мк/μ
10-3 милли м/m
10-2 санти c
10-1 деци д/d
101 дека да/da
102 гекто г/h
103 кило к/k
106 мега M
109 гига Г/G
1012 тера T
1015 пета П/P
1018 экза Э/E
1021 зета З/Z
1024 йотта И/Y
1027 ронна R
1030 куэкка Q

Сила тока в 1А – это величина, равная отношению заряда в 1 Кл, прошедшего за 1с времени через поверхность (проводник), к времени прохождения заряда через поверхность. Для протекания тока необходимо, чтобы цепь была замкнутой.

Сила тока измеряется в амперах. 1А=1Кл/1c

В практике встречаются

1кА = 1000А

1мА = 0,001А

1мкА = 0,000001А

Электрическое напряжение – разность потенциалов между двумя точками электрического поля. Величина электрического потенциала измеряется в вольтах, следовательно, и напряжение измеряется в вольтах (В).

1Вольт – напряжение, которое необходимо для выделения в проводнике энергии в 1Ватт при протекании по нему тока силой в 1Ампер.

1В=1Вт/1А.

В практике встречаются

1кВ = 1000В

1мВ = 0,001В

Электрическое сопротивление – характеристика проводника препятствовать протеканию по нему электрического тока. Определяется как отношение напряжения на концах проводника к силе тока в нем. Измеряется в омах (Ом). В некоторых пределах величина постоянная.

1Ом – сопротивление проводника при протекании по нему постоянного тока силой 1А и возникающем при этом на концах напряжении в 1В.

Из школьного курса физики все мы помним формулу для однородного проводника постоянного сечения:

R=ρlS – сопротивление такого проводника зависит от сечения S и длины l

где ρ – удельное сопротивление материала проводника, табличная величина.

Между тремя вышеописанными величинами существует закон Ома для цепи постоянного тока.

Ток в цепи прямо пропорционален величине напряжения в цепи и обратно пропорционален величине сопротивления цепи – закон Ома.

I=U/R

Электрической емкостью называется способность проводника накапливать электрический заряд.

Емкость измеряется в фарадах (1Ф).

1Ф = 1Кл/1В

1Ф – это емкость конденсатора между обкладками которого возникает напряжение 1В при заряде в 1Кл.

В практике встречаются

1пФ = 0,000000000001Ф

1нФ = 0,000000001Ф

Индуктивность – это величина, характеризующая способность контура, по которому протекает электрический ток, создавать и накапливать магнитное поле.

Индуктивность измеряется в генри.

1Гн = (В*с)/А

1Гн – величина, равная ЭДС самоиндукции, возникающей при изменении величины тока в контуре на 1А в течение 1секунды.

В практике встречаются

1мГн = 0, 001Гн

Электрическая проводимость – величина, показывающая способность тела проводить электрический ток. Обратная величина сопротивлению.

Электропроводность измеряется в сименсах.

1См = Ом-1

Сохраните в закладки или поделитесь с друзьями

Самое популярное

TG Условное обозначение и заводская документация

Задачи

  • Составление и обновление стандартов VGB для условных обозначений и заводской документации:
    • Система условных обозначений RDS-PP в соотв. согласно DIN ISO / TS 81346-10
    • Система обозначений электростанций ККС в соотв. согласно директиве VGB
    • Обозначение документа в соотв. согласно DIN EN 61355-1
    • Предоставление технической документации (технические данные установки, документы) на энергоблоки
    • Создание обозначений и сокращений

Сервис

  • Консультации и поддержка для операторов, производителей и инженеров по планированию в связи с применением RDS-PP, KKS и кода классификации вида документа (ключ DCC).

Текущие темы

  • Участие и контакты с национальными и международными органами по стандартизации по вопросам условных обозначений и заводской документации.
  • Участие в Комитете Сообщества по системам обозначений в Комитете по стандартам DIN. Технические основы DIN ISO / TS 81346-10;
  • Участие в рабочем комитете по документации технических основ комитета по стандартам в DIN на FB 146;
  • Участие в рабочем комитете «Жизненный цикл технических объектов в услугах комитета по стандартизации DIN 77005-1»;
  • Участие в международном рабочем комитете WG10 ISO TC 10 / SC 10 по IEC 81346-series
  • Участие в координационной группе Smart Grid CEN-CENELEC-ETSI;
  • Контакты к К113 ДКЕ для «Руководства по эксплуатации технических установок и систем»;
  • Контакты с международными рабочими группами ISO TC 10 / SC 10 для блок-схем.
  • Участие в e-cl @ ss с целью внедрения отдельных компонентов электростанции в межотраслевой классификации продукции
  • Проведение конференций по справочной и заводской документации
  • Презентация продукции Технической группы на выставках и конгрессах
  • Разработка и обновление стандартов VGB:
    • Система условных обозначений для электростанций RDS-PP — Буквенные коды для систем электростанций (системный ключ)
      VGB-S-821-00-2016-06-EN, [ранее: B101e]
    • RDS-PP — буквенные коды для основных функций и классов продуктов
      VGB-B102e, 1-е издание 2010 г.
    • Обозначение в документе для блоков питания
      VGB-S-832-00-2016-04-DE-EN [ранее: B103e], издание 2016 г.
    • VGB Сокращенный каталог технологий для электростанций
      VGB-S-891-00-2012-06-DE-EN [ранее: B107e], издание 2012 г.
    • Правила создания наименований и их применения для энергетики
      VGB-B108e, 3-е издание 2010 г.
    • Предоставление технической документации (технические данные предприятия, документы) для блоков питания — электронная книга
      VGB-S-831-00-2015-05-EN-ebook [ранее: VGB-R171e], 3-е издание 2015 г.
    • Система идентификации KKS для электростанций
      VGB-S-811-01-2018-01-EN [ранее: VGB-B105e], 8-е издание 2018 г.
    • RDS-PP® Application Guideline Part 01: Power Plants, General
      VGB-S-823-01-2015-09-EN-DE, Edition 2015
    • Руководство по применению RDS-PP®, часть 31: Гидроэлектростанции
      VGB-S-823-31-2014-12-EN-DE [ранее: VGB-B106 D1e], редакция 2015 г.
    • Руководство по применению RDS-PP®, часть 32: Ветровые электростанции
      VGB-S-823-32-2014-03-EN-DE-0 [ранее: VGB-B116 D2e], издание 2014 г.

    • RDS-PP® Application Guideline Part 33: Photovoltaic Power Plants
      VGB-S-823-33-2018-07-EN-DE Edition 2018

    • RDS-PP® Application Guideline Part 41: Power to Gas
      VGB-S-823-41-2018-07-EN-DE Edition 2018

Измерение тока импульсного источника питания — Часть 3: Методы измерения тока

Три наиболее часто используемых метода измерения тока для импульсных источников питания: использование измерительного резистора, использование MOSFET R DS (ON) и использование постоянного тока сопротивление (DCR) индуктора. Каждый метод имеет преимущества и недостатки, которые следует учитывать при выборе одного метода перед другим.

Чувствительный резистор в качестве чувствительного элемента тока дает наименьшую ошибку измерения (обычно от 1% до 5%) и очень низкий температурный коэффициент, порядка 100 ppm / ° C (0,01%). Обеспечивает наиболее точный блок питания с точки зрения производительности; он помогает обеспечить очень точное ограничение тока источника питания, а также способствует точному распределению тока при параллельном подключении нескольких источников питания.

Рисунок 1. R SENSE Current Sensing

С другой стороны, поскольку в конструкцию источника питания добавлен резистор, чувствительный к току, резистор также генерирует дополнительное рассеивание мощности. Таким образом, метод контроля тока измерительного резистора может иметь более высокое рассеивание мощности по сравнению с другими методами измерения, что приводит к небольшому снижению общей эффективности решения. Специальный резистор измерения тока также может увеличить стоимость решения, поскольку резистор измерения обычно стоит от 0 долларов США.05 и 0,20 доллара.

Еще один параметр, который не следует игнорировать при выборе сенсорного резистора, — это его паразитная индуктивность (также называемая эффективной последовательной индуктивностью или ESL). Чувствительный резистор правильно смоделирован как последовательно включенный резистор с конечной индуктивностью.

Рисунок 2. R SENSE ESL Модель

Эта индуктивность зависит от выбранного резистора считывания. Некоторые типы резисторов, чувствительных к току, такие как резисторы с металлическими пластинами, имеют низкий ESL и являются предпочтительными.Для сравнения, резисторы с проволочной обмоткой имеют более высокий ESL из-за своей конструкции корпуса, и их следует избегать. В целом, эффект ESL становится более выраженным с увеличением уровней тока, уменьшением амплитуды сигнала считывания и неправильной компоновкой. Он также включает в себя общую индуктивность схемы, добавленную к паразитной индуктивности из-за выводов компонентов и других компонентов схемы. Общая индуктивность схемы также зависит от ее компоновки, поэтому необходимо уделить должное внимание размещению компонентов; неправильное размещение может повлиять на стабильность и усугубить существующие проблемы конструкции схемы.

Воздействие сенсорного резистора ESL может быть слабым или серьезным. ESL может привести к значительному звонку в драйвере затвора переключателя, неблагоприятно влияя на включение переключателя. Он также добавляет пульсацию к сигналу измерения тока, что приводит к скачку напряжения в форме волны вместо ожидаемой формы волны с зубчатым венцом, как показано ниже. Это ухудшает точность измерения тока.

Рисунок 3. R SENSE ESL может отрицательно повлиять на определение тока

Чтобы минимизировать ESL резистора, избегайте использования измерительных резисторов с длинными петлями (например, резисторы с проволочной обмоткой) или длинных выводов (например, резисторов с высоким профилем). Предпочтительны низкопрофильные устройства для поверхностного монтажа; примеры включают «пластинчатую» структуру SMD размеров 0805, 1206, 2010, 2512; еще лучший выбор включает размеры SMD с обратной геометрией 0612 и 1225.

Простое и экономичное измерение тока достигается за счет использования MOSFET R DS (ON) для измерения тока. LTC3878 — устройство, использующее этот подход. Он использует архитектуру измерения тока с постоянным включением и минимальным током. Здесь верхний переключатель включен на фиксированный промежуток времени, после чего включается нижний переключатель, и его падение напряжения R DS используется для определения «впадины» тока или нижнего предела тока.

Рис. 4. MOSFET R DS (ON) Current Sensing

Несмотря на дешевизну, у этого подхода есть некоторые недостатки. Во-первых, это не очень точно; может быть широкий разброс (порядка 33% и более) в диапазоне значений R DS (ON) . Также он может иметь очень большой температурный коэффициент; значения выше 80% выше 100 ° C не исключены. Кроме того, если используется внешний полевой МОП-транзистор, необходимо учитывать паразитную индуктивность упаковки полевого МОП-транзистора.Этот тип измерения не рекомендуется для очень высоких уровней тока, особенно для цепей PolyPhase, которые требуют хорошего распределения фазного тока.

Измерение тока сопротивления индуктивности постоянному току (DCR) использует паразитное сопротивление обмотки индуктора для измерения тока, тем самым устраняя резистор считывания. Это снижает стоимость компонентов и увеличивает эффективность источника питания. По сравнению с полевым МОП-транзистором R DS (ON) , индуктор DCR обмотки из медного провода обычно имеет меньшие колебания между частями, хотя они все еще зависят от температуры.Он предпочтителен в приложениях с низким выходным напряжением, потому что любое падение на резисторе считывания составляет значительную часть выходного напряжения. RC-цепь размещается параллельно с последовательной катушкой индуктивности и комбинацией паразитного сопротивления, и измеряемое напряжение измеряется на конденсаторе C1 (рисунок 5).

Рисунок 5. Измерение тока постоянного тока индуктивности

При правильном выборе компонента (R1 * C1 = L / DCR) напряжение на конденсаторе C1 будет пропорционально току катушки индуктивности.Чтобы свести к минимуму погрешность измерения и шум, предпочтительно низкое значение R1.

Поскольку схема не измеряет непосредственно ток катушки индуктивности, она не может определить насыщение катушки индуктивности. Поэтому рекомендуется использовать индукторы с «мягким насыщением», такие как индукторы с сердечником из железа. Эти катушки индуктивности обычно имеют более высокие потери в сердечнике, чем сопоставимые катушки индуктивности с ферритовым сердечником. По сравнению с методом R SENSE , измерение DCR индуктора исключает потерю мощности чувствительного резистора, но может увеличить потери в сердечнике индуктора.

В обоих методах измерения R SENSE и DCR требуется измерение Кельвина из-за слабого сигнала измерения. Важно, чтобы следы измерения Кельвина (SENSE + и SENSE на рис. 5) находились вдали от зашумленных участков меди и других дорожек сигнала, чтобы свести к минимуму наложение шума. Некоторые устройства (например, LTC3855) имеют измерение DCR с температурной компенсацией, что улучшает точность по температуре.

В следующей таблице приведены различные типы методов измерения тока, а также преимущества и недостатки каждого из них.

Каждый из упомянутых выше методов обеспечивает дополнительную защиту импульсных источников питания. Компромиссы в отношении точности, эффективности, теплового напряжения, защиты и переходных характеристик — все это может повлиять на процесс выбора, в зависимости от требований конструкции. Разработчику источника питания необходимо тщательно выбрать метод измерения тока и силовой индуктор, а также правильно спроектировать сеть измерения тока. Компьютерные программы, такие как инструмент проектирования LTpowerCAD от Linear Technology и инструмент моделирования цепей LTspice, могут быть очень полезны для упрощения проектирования с оптимальными результатами.

Доступны и другие методы измерения тока. Например, трансформатор измерения тока часто используется с изолированными источниками питания для передачи информации о сигнале тока через изолирующий барьер. Этот подход обычно дороже, чем три описанных выше метода. Кроме того, в последние годы стали доступны новые силовые полевые МОП-транзисторы со встроенными драйверами затвора (DrMOS), которые также интегрируют измерение тока, но на сегодняшний день существует недостаточно данных, чтобы сделать вывод о том, насколько хорошо работает датчик DrMOS с точки зрения точности и качества воспринимаемого сигнала.

% PDF-1.6 % 1492 0 объект > endobj xref 1492 90 0000000016 00000 н. 0000008142 00000 п. 0000008262 00000 н. 0000008300 00000 н. 0000008833 00000 н. 0000009042 00000 н. 0000009181 00000 п. 0000009320 00000 н. 0000009459 00000 н. 0000009598 00000 н. 0000009737 00000 н. 0000009875 00000 н. 0000010014 00000 п. 0000010153 00000 п. 0000010292 00000 п. 0000010431 00000 п. 0000010569 00000 п. 0000010708 00000 п. 0000010847 00000 п. 0000010986 00000 п. 0000011125 00000 п. 0000011264 00000 п. 0000011403 00000 п. 0000011542 00000 п. 0000011681 00000 п. 0000011819 00000 п. 0000011958 00000 п. 0000012232 00000 п. 0000012413 00000 п. 0000012528 00000 п. 0000012641 00000 п. 0000012979 00000 п. 0000013346 00000 п. 0000014123 00000 п. 0000014701 00000 п. 0000015348 00000 п. 0000015769 00000 п. 0000016024 00000 п. 0000016699 00000 п. 0000017265 00000 п. 0000017842 00000 п. 0000018204 00000 п. 0000018339 00000 п. 0000019039 00000 п. 0000019816 00000 п. 0000020441 00000 п. 0000020531 00000 п. 0000020807 00000 п. 0000021121 00000 п. 0000022014 00000 н. 0000022167 00000 п. 0000023195 00000 п. 0000023582 00000 п. 0000024029 00000 п. 0000024409 00000 п. 0000026221 00000 п. 0000026618 00000 п. 0000027865 00000 н. 0000028122 00000 п. 0000028448 00000 п. 0000056232 00000 п. 0000061589 00000 п. 0000061960 00000 п. 0000062341 00000 п. 0000065033 00000 п. 0000065366 00000 п. 0000065682 00000 п. 0000072096 00000 п. 0000072545 00000 п. 0000072616 00000 п. 0000072676 00000 п. 0000072735 00000 п. 0000072802 00000 п. 0000072867 00000 п. 0000072931 00000 п. 0000072984 00000 п. 0000073037 00000 п. 0000073102 00000 п. 0000073165 00000 п. 0000073227 00000 н. 0000073308 00000 п. 0000073397 00000 п. 0000073474 00000 п. 0000073534 00000 п. 0000073595 00000 п. 0000073659 00000 п. 0000073720 00000 п. 0000073786 00000 п. 0000073846 00000 п. 0000002096 00000 н. трейлер ] >> startxref 0 %% EOF 1581 0 объект > поток xZkXSW ;; ̍ $ HBDP $ գ) jbE «t) Zh; D (* ړ Rl; L: ‘T: R3I9yϳ {g ~ ڈ ~ A {2vqG 𣄣 Flh a2-%` ЩM8npLŨ | Qq [22Q 4S8 ~ UEPZ

Измерение тока импульсного источника питания — Часть 1: Основы

Текущее управление широко используется для импульсных источников питания благодаря своей высокой надежности, простой конструкции с компенсацией контура и простой и надежной возможности распределения нагрузки. Сигнал считывания тока является важной частью конструкции импульсного источника питания с режимом тока; он используется для регулирования мощности, а также обеспечивает защиту от перегрузки по току. На рисунке 1 показана схема измерения тока для источника питания с понижающим режимом синхронного переключения LTC3855. LTC3855 — это устройство управления в режиме тока с циклическим ограничением тока. Чувствительный резистор R S контролирует ток.

Рисунок 1. Резистор измерения тока импульсного источника питания (R S ).

На рис. 2 показано осциллографическое изображение тока катушки индуктивности для двух случаев: в одном случае с нагрузкой, которую ток катушки индуктивности способен управлять (красная линия), и во втором случае, когда выход закорочен (фиолетовая линия) .

Рис. 2. Ограничение тока LTC3855 с примером обратной связи на шине 1,5 В / 15 А.

Первоначально пиковый ток индуктора устанавливается выбранным значением индуктора, временем включения питания, входным и выходным напряжениями цепи и током нагрузки (обозначено цифрой «1» на графике).Когда происходит короткое замыкание, ток в катушке индуктивности быстро возрастает, пока не достигнет предела тока в точке, где R S × I INDUCTOR (IL) равняется максимальному напряжению считывания тока, защищая как устройство, так и цепь ниже по потоку ( обозначено цифрой «2» на графике). После этого встроенное ограничение обратного тока (цифра «3» на графике) дополнительно снижает ток индуктора, чтобы минимизировать тепловую нагрузку.

Измерение тока также служит другим целям. Это позволяет точно разделить ток в конструкции многофазного источника питания.В слабо нагруженных силовых конструкциях его можно использовать для повышения эффективности за счет предотвращения обратного протекания тока (обратные токи — это токи, которые протекают в обратном направлении через катушку индуктивности, от выхода к входу, что может быть нежелательным или даже разрушительным в некоторых приложениях). Кроме того, когда многофазное приложение слегка нагружено, измерение тока может использоваться для уменьшения количества необходимых фаз, что увеличивает эффективность схемы. Для нагрузок, которым требуется источник тока, измерение тока может превратить источник питания в источник постоянного тока для таких приложений, как управление светодиодами, зарядка аккумуляторов и управление лазерами.

В Части 2 этой серии статей «Где разместить резистор измерения тока» мы рассмотрим, в какую ветвь цепи нужно поместить резистор измерения тока и как это влияет на работу.

Программное обеспечение

LTspice
Программное обеспечение

LTspice ® — это мощный, быстрый и бесплатный инструмент моделирования, схематического захвата и просмотра сигналов с усовершенствованиями и моделями для улучшения моделирования импульсных регуляторов.

LTpowerCAD

Инструмент проектирования LTpowerCAD — это полная программа для проектирования источников питания, которая может значительно облегчить задачи проектирования источников питания.Он направляет пользователей к решению, выбирает компоненты силового каскада, предоставляет подробную информацию об энергоэффективности, показывает стабильность графика Боде быстрого цикла и анализ переходных процессов нагрузки, а также может экспортировать окончательный проект в LTspice для моделирования.

Зависимость переменного тока (AC) от постоянного (DC)

Поразительно!

Откуда австралийская рок-группа AC / DC получила свое название? Почему, переменный ток и постоянный ток, конечно же! И переменный, и постоянный ток описывают типы протекания тока в цепи.В постоянного тока (DC) электрический заряд (ток) течет только в одном направлении. Электрический заряд в переменном токе (AC), с другой стороны, периодически меняет направление. Напряжение в цепях переменного тока также периодически меняется на противоположное, потому что ток меняет направление.

Большая часть созданной вами цифровой электроники будет использовать постоянный ток. Однако важно понимать некоторые концепции переменного тока. Большинство домов подключены к сети переменного тока, поэтому, если вы планируете подключить свой проект музыкальной шкатулки Tardis к розетке, вам нужно будет преобразовать переменный ток в постоянный.Переменный ток также обладает некоторыми полезными свойствами, такими как способность преобразовывать уровни напряжения с помощью одного компонента (трансформатора), поэтому переменный ток был выбран в качестве основного средства передачи электроэнергии на большие расстояния.

Что вы узнаете

  • История создания переменного и постоянного тока
  • Различные способы генерации переменного и постоянного тока
  • Некоторые примеры приложений переменного и постоянного тока

Рекомендуемая литература

и nbsp

и nbsp

Переменный ток (AC)

Переменный ток описывает поток заряда, который периодически меняет направление.В результате уровень напряжения также меняется на противоположный вместе с током. AC используется для подачи электроэнергии в дома, офисные здания и т. Д.

Генерация переменного тока

AC может производиться с использованием устройства, называемого генератором переменного тока. Это устройство представляет собой особый тип электрического генератора, предназначенный для выработки переменного тока.

Петля из проволоки скручена внутри магнитного поля, которое индуцирует ток по проволоке. Вращение провода может происходить с помощью любого количества средств: ветряной турбины, паровой турбины, проточной воды и так далее.Поскольку провод вращается и периодически меняет магнитную полярность, напряжение и ток на проводе чередуются. Вот короткая анимация, демонстрирующая этот принцип:


(Видео предоставлено: Хуррам Танвир)

Генератор переменного тока можно сравнить с нашей предыдущей аналогией с водой:

Чтобы генерировать переменный ток в наборе водопроводных труб, мы подключаем механический кривошип к поршню, который перемещает воду по трубам вперед и назад (наш «переменный» ток).Обратите внимание, что защемленный участок трубы по-прежнему оказывает сопротивление потоку воды независимо от направления потока.

Осциллограммы

AC может быть разных форм, если напряжение и ток чередуются. Если мы подключим осциллограф к цепи переменного тока и построим график ее напряжения с течением времени, мы можем увидеть несколько различных форм сигналов. Наиболее распространенный тип переменного тока — синусоидальный. Переменный ток в большинстве домов и офисов имеет колебательное напряжение, которое создает синусоидальную волну.

Другие распространенные формы переменного тока включают прямоугольную волну и треугольную волну:

Прямоугольные волны часто используются в цифровой и переключающей электронике для проверки их работы.

Треугольные волны используются при синтезе звука и используются для тестирования линейной электроники, такой как усилители.

Описание синусоидальной волны

Мы часто хотим описать форму волны переменного тока математическими терминами. В этом примере мы будем использовать обычную синусоидальную волну. Синусоидальная волна состоит из трех частей: амплитуда, частота и фаза .

Рассматривая только напряжение, мы можем описать синусоидальную волну как математическую функцию:

V (t) — это наше напряжение как функция времени, что означает, что наше напряжение изменяется с изменением времени. Уравнение справа от знака равенства описывает, как напряжение изменяется во времени.

V P — амплитуда . Он описывает максимальное напряжение, которое наша синусоида может достигать в любом направлении, а это означает, что наше напряжение может быть + V P вольт, -V P вольт или где-то посередине.

Функция sin () указывает, что наше напряжение будет в форме периодической синусоидальной волны, которая представляет собой плавные колебания около 0 В.

— это константа, которая преобразует частоту из циклов (в герцах) в угловую частоту (радианы в секунду).

f описывает частоту синусоидальной волны. Это дается в виде герц или единиц в секунду . Частота показывает, сколько раз определенная форма волны (в данном случае один цикл нашей синусоидальной волны — подъем и спад) происходит в течение одной секунды.

t — наша независимая переменная: время (измеряется в секундах). Со временем меняется и форма нашего сигнала.

φ описывает фазу синусоидальной волны. Фаза — это мера того, насколько сдвинута форма сигнала во времени. Часто это число от 0 до 360 и измеряется в градусах. Из-за периодической природы синусоидальной волны, если форма волны сдвинута на 360 °, она снова становится такой же, как если бы она была сдвинута на 0 °.Для простоты мы предполагаем, что в остальной части этого руководства фаза равна 0 °.

Мы можем обратиться к нашей надежной розетке за хорошим примером того, как работает форма сигнала переменного тока. В Соединенных Штатах в наши дома подается питание переменного тока с размахом 170 В (амплитуда) и 60 Гц (частота). Мы можем вставить эти числа в нашу формулу, чтобы получить уравнение (помните, что мы предполагаем, что наша фаза равна 0):

Мы можем использовать наш удобный графический калькулятор, чтобы построить график этого уравнения. Если графического калькулятора нет, мы можем использовать бесплатную онлайн-программу для построения графиков, такую ​​как Desmos (обратите внимание, что вам, возможно, придется использовать «y» вместо «v» в уравнении, чтобы увидеть график).

Обратите внимание, что, как мы и предсказывали, напряжение периодически повышается до 170 В и понижается до -170 В. Кроме того, каждую секунду происходит 60 циклов синусоидальной волны. Если бы мы измеряли напряжение в розетках с помощью осциллографа, мы бы увидели именно это ( ПРЕДУПРЕЖДЕНИЕ: не пытайтесь измерить напряжение в розетке с помощью осциллографа! Это может привести к повреждению оборудования).

ПРИМЕЧАНИЕ: Возможно, вы слышали, что напряжение переменного тока в США составляет 120 В. Это тоже правильно.Как? Говоря об переменном токе (поскольку напряжение постоянно меняется), часто проще использовать среднее значение. Для этого мы используем метод под названием «Среднеквадратичный корень». (RMS). Когда вы хотите рассчитать электрическую мощность, часто бывает полезно использовать значение RMS для переменного тока. Несмотря на то, что в нашем примере у нас было напряжение от -170 В до 170 В, среднеквадратичное значение составляет 120 В RMS.

Приложения

В розетках дома и в офисе почти всегда есть кондиционер. Это связано с тем, что генерировать и транспортировать переменный ток на большие расстояния относительно просто.При высоком напряжении (более 110 кВ) при передаче электроэнергии теряется меньше энергии. Более высокие напряжения означают более низкие токи, а более низкие токи означают меньшее тепловыделение в линии электропередачи из-за сопротивления. Переменный ток можно легко преобразовывать в высокое напряжение и обратно с помощью трансформаторов.

AC также может приводить в действие электродвигатели. Двигатели и генераторы представляют собой одно и то же устройство, но двигатели преобразуют электрическую энергию в механическую (если вал двигателя вращается, на выводах генерируется напряжение!).Это полезно для многих крупных бытовых приборов, таких как посудомоечные машины, холодильники и т. Д., Которые работают от сети переменного тока.

Постоянный ток (DC)

Постоянный ток немного легче понять, чем переменный. Вместо того, чтобы колебаться вперед и назад, постоянный ток обеспечивает постоянное напряжение или ток.

Генерация постоянного тока

DC можно создать несколькими способами:

  • Генератор переменного тока, оборудованный устройством, называемым «коммутатор», может производить постоянный ток
  • Использование устройства, называемого «выпрямитель», которое преобразует переменный ток в постоянный
  • Батареи обеспечивают постоянный ток, который образуется в результате химической реакции внутри батареи

Используя нашу аналогию с водой снова, DC подобен резервуару с водой со шлангом на конце.

Бак может выталкивать воду только в одном направлении: из шланга. Как и в случае с нашей батареей постоянного тока, когда бак опустеет, вода больше не течет по трубам.

Описание DC

DC определяется как «однонаправленный» ток; ток течет только в одном направлении. Напряжение и ток могут изменяться с течением времени до тех пор, пока направление потока не меняется. Для упрощения предположим, что напряжение является постоянным. Например, мы предполагаем, что батарея AA обеспечивает 1.5 В, что математически можно описать как:

Если мы построим график с течением времени, мы увидим постоянное напряжение:

Что это значит? Это означает, что мы можем рассчитывать на то, что большинство источников постоянного тока обеспечат постоянное напряжение во времени. На самом деле аккумулятор будет медленно терять заряд, а это означает, что напряжение будет падать по мере использования аккумулятора. В большинстве случаев мы можем предположить, что напряжение постоянно.

Приложения

Почти все проекты электроники и запчасти, продаваемые на SparkFun, работают на DC.Все, что работает от батареи, подключается к стене с помощью адаптера переменного тока или использует USB-кабель для питания, зависит от постоянного тока. Примеры электроники постоянного тока включают:

  • Сотовые телефоны
  • D&D Dice Gauntlet на основе LilyPad
  • Телевизоры с плоским экраном (переменный ток в телевизор, который преобразуется в постоянный ток)
  • Фонари
  • Гибридные и электромобили

Битва течений

Почти каждый дом и офис подключен к сети переменного тока.Однако это решение не было мгновенным. В конце 1880-х годов различные изобретения в Соединенных Штатах и ​​Европе привели к полномасштабной битве между распределением переменного и постоянного тока.

В 1886 году электрическая компания Ganz Works, расположенная в Будапеште, электрифицировала весь Рим с помощью переменного тока. Томас Эдисон, с другой стороны, построил 121 электростанцию ​​постоянного тока в Соединенных Штатах к 1887 году. Поворотный момент в битве наступил, когда Джордж Вестингауз, известный промышленник из Питтсбурга, в следующем году приобрел патенты Николы Теслы на двигатели переменного тока и трансмиссии. .

AC против DC

Томас Эдисон (Изображение любезно предоставлено biography.com)

В конце 1800-х годов постоянный ток было нелегко преобразовать в высокое напряжение. В результате Эдисон предложил систему небольших местных электростанций, которые питали бы отдельные кварталы или участки города. Электроэнергия распределялась по трем проводам от электростанции: +110 вольт, 0 вольт и -110 вольт. Фонари и двигатели могут быть подключены между розеткой + 110 В или 110 В и 0 В (нейтраль). 110 В допускает некоторое падение напряжения между установкой и нагрузкой (дома, в офисе и т. Д.).).

Несмотря на то, что падение напряжения на линиях электропередачи было учтено, электростанции необходимо было располагать в пределах 1 мили от конечного пользователя. Это ограничение сделало распределение электроэнергии в сельской местности чрезвычайно трудным, если не невозможным.

С помощью патентов Tesla компания Westinghouse работала над усовершенствованием системы распределения переменного тока. Трансформаторы предоставили недорогой метод повышения напряжения переменного тока до нескольких тысяч вольт и его снижения до приемлемого уровня. При более высоких напряжениях та же мощность могла передаваться при гораздо меньшем токе, что означало меньшие потери мощности из-за сопротивления проводов.В результате крупные электростанции могут быть расположены на много миль от них и обслуживать большее количество людей и зданий.

Кампания Эдисона по выявлению мазков

В течение следующих нескольких лет Эдисон провел кампанию по категорическому противодействию использованию AC в Соединенных Штатах, которая включала лоббирование законодательных собраний штатов и распространение дезинформации о AC. Эдисон также приказал нескольким техникам публично казнить животных переменным током, пытаясь показать, что переменный ток опаснее постоянного тока. Пытаясь показать эти опасности, Гарольд П.Браун и Артур Кеннелли, сотрудники Edison, разработали первый электрический стул для штата Нью-Йорк с использованием переменного тока.

Возвышение AC

В 1891 году Международная электротехническая выставка проводилась во Франкфурте, Германия, и показала первую передачу трехфазного переменного тока на большие расстояния, которая питала фары и двигатели на выставке. Присутствовали несколько представителей того, что впоследствии станет General Electric, и впоследствии они были впечатлены выставкой. В следующем году была создана компания General Electric, которая начала инвестировать в технологии переменного тока.

Электростанция Эдварда Дина Адамса на Ниагарском водопаде, 1896 г. (Изображение предоставлено teslasociety.com)

Westinghouse выиграла контракт в 1893 году на строительство плотины гидроэлектростанции, чтобы использовать энергию Ниагарского водопада и передавать переменный ток в Буффало, штат Нью-Йорк. Проект был завершен 16 ноября 1896 года, и в Буффало начали использовать переменный ток. Эта веха ознаменовала упадок DC в США. В то время как Европа примет стандарт переменного тока 220–240 В при 50 Гц, стандартом в Северной Америке станет 120 В при 60 Гц.

Высоковольтный постоянный ток (HVDC)

Швейцарский инженер Рене Тьюри использовал серию двигателей-генераторов для создания высоковольтной системы постоянного тока в 1880-х годах, которую можно было использовать для передачи постоянного тока на большие расстояния. Однако из-за высокой стоимости и высокой стоимости обслуживания систем Thury HVDC никогда не применялся в течение почти столетия.

С изобретением полупроводниковой электроники в 1970-х годах стало возможным экономичное преобразование между переменным и постоянным током. Для генерации постоянного тока высокого напряжения (иногда до 800 кВ) можно использовать специальное оборудование.Некоторые страны Европы начали использовать линии HVDC для электрического соединения различных стран.

В линиях

HVDC потери меньше, чем в аналогичных линиях переменного тока на очень больших расстояниях. Кроме того, HVDC позволяет подключать различные системы переменного тока (например, 50 Гц и 60 Гц). Несмотря на свои преимущества, системы HVDC более дороги и менее надежны, чем обычные системы переменного тока.

В конце концов, Эдисон, Тесла и Вестингауз могут осуществить свои желания. Переменный ток и постоянный ток могут сосуществовать, и каждый служит определенной цели.

Ресурсы и дальнейшее развитие

Теперь вы должны хорошо понимать разницу между переменным и постоянным током. Переменный ток легче преобразовывать между уровнями напряжения, что делает передачу высокого напряжения более возможной. С другой стороны, постоянный ток присутствует почти во всей электронике. Вы должны знать, что они не очень хорошо сочетаются, и вам нужно будет преобразовать переменный ток в постоянный, если вы хотите подключить большую часть электроники к розетке. С этим пониманием вы должны быть готовы заняться некоторыми более сложными схемами и концепциями, даже если они содержат переменный ток.

Взгляните на следующие руководства, когда будете готовы глубже погрузиться в мир электроники:

и nbsp

Устройство остаточного тока

— Простая английская Википедия, бесплатная энциклопедия

Розетка GFCI с красной кнопкой для тестирования и черной кнопкой для сброса

Прерыватель цепи замыкания на землю (GFCI) или Устройство остаточного тока (RCD) — это тип автоматического выключателя, который отключает подачу электроэнергии, когда он обнаруживает дисбаланс между исходящим и входящим током.Основная цель — защитить людей от поражения электрическим током, вызванного тем, что часть тока проходит через тело человека из-за электрического сбоя, такого как короткое замыкание, нарушение изоляции или неисправность оборудования. Стандартные автоматические выключатели отключают питание при слишком высоком токе, например, 10, 15 или 20 ампер, но всего 0,030 ампер через тело может вызвать паралич скелетных мышц и остановить человеческое сердце. GFCI / RCD разрывает цепь, когда обнаруживает дисбаланс всего 0,005 ампер (0.030 ампер в Австралии и некоторых странах Европы / Азии.)

Автоматический выключатель защищает провода и розетки в доме от перегрева и возможного пожара. GFCI / RCD защищает людей и часто встречается в ванных комнатах или кухнях, где используются электрические устройства, и голое тело людей может контактировать с полом или металлическими приспособлениями, которые обеспечивают альтернативный путь для прохождения тока в случае электрического сбоя.

GFCI / RCD также может предотвратить возгорание от коротких замыканий и других электрических неисправностей, которые не затрагивают людей, например, короткое замыкание с низким током, когда ток никогда не достигает точки срабатывания автоматического выключателя, например.грамм. провод под напряжением падает в ванну с водой или влажной почвой, и ток течет только 1-2 ампера.

Электрические розетки подают ток, который выходит из одного контакта розетки, называемого «живым», проходит через электрическое устройство и возвращается через другой контакт, «нейтральный». Во многих странах, таких как США, Индия и другие, «нейтраль» также подключается к земле (через стержень, вбитый в почву). Если человек касается оголенного «живого» провода, ток может пройти через тело к любой части (например, другой руке или босой ноге), прямо или косвенно связанной с землей, например, через металл, такой как водопроводные трубы, или через влажную плитку или ванна, полная воды, где вода действует как проводник.Чистая вода — плохой проводник, но на кухне или в ванной она обычно соленая или мыльная, что увеличивает проводимость; но неважно, так как для того, чтобы убить человека, требуется очень мало тока, даже плохой проводник может вызвать смертельный шок.

Устройство GFCI использует дифференциальный трансформатор для сравнения тока, «уходящего» на горячую ногу, с током, «возвращающимся» на нейтраль. Если между ними есть достаточно большая разница, обычно 5 миллиампер (в некоторых местах 30), это считается дисбалансом, и внутренний соленоид механически отключает встроенный автоматический выключатель, прерывая соединение как с контактами под напряжением, так и с нейтралью. .

Предполагается, что часть исходящего тока проходит через человека или объект и направляется альтернативным путем обратно к нейтрали.

Смерть от электричества (поражение электрическим током) может произойти, если через сердце протекает всего лишь 30 миллиампер тока, всего за долю секунды. Устройство GFCI защищает на уровне, который намного ниже того, который необходим для причинения вреда.

Если устройство GFCI отключается и неисправность позже устраняется, то пользователь сбрасывает устройство GFCI, нажимая кнопку сброса.Если проблема не устранена, GFCI отключает цепь и не выполняет сброс. Также есть тестовая кнопка, которая заставит GFCI отключиться, если он работает правильно. Торговые точки GFCI следует проверять не реже одного раза в месяц. [1]

Устройства GFCI используют стандарт синхронизации для предотвращения ложных «ложных» срабатываний, а также могут защищать от неправильного подключения нейтрали к земле.

Несколько стандартных (не GFCI) розеток можно защитить, подключив их цепочкой к выходу одной настенной розетки GFCI, хотя проводку необходимо выполнять с осторожностью, учитывая максимальную нагрузку и предотвращая ложное «неприятное» срабатывание.

Доступны два типа GFCI

: автоматический выключатель, который устанавливается в электрическую панель, и тип розетки, который устанавливается в электрическую коробку. Также доступны GFCI, которые прикрепляются к шнурам устройства или встроены в удлинители. В более новых фенах они также могут быть в виде небольшой коробки на конце шнура питания или на самой ручке.

Поскольку GFCI контролирует ток только на горячей ноге по сравнению с нейтралью, GFCI можно использовать для обновления старых двухконтактных (незаземленных) розеток до трехконтактных (заземленных / заземленных) без установки нового провода.Схема с устройством GFCI без заземления намного безопаснее, чем двухконтактная розетка без заземления. Установленный таким образом GFCI должен быть помечен как «Нет заземления оборудования».

Когда GFCI устанавливается в электрическую коробку без подключения винта заземления (поскольку нет заземляющего провода), на выходе GFCI и всех последующих выходах размещается этикетка с надписью «Нет заземления оборудования». Некоторые из этих меток обычно включены в GFCI. В некоторых частях света «землю» называют «землей».

GFCI — подходящая замена двухконтактным розеткам без заземленного провода. Национальный электротехнический кодекс требует защиты от GFCI в жилых помещениях на кухонных столешницах, в ванных комнатах, недостроенных подвалах, не предназначенных для проживания, в местах для прогулок, в гаражах, умывальниках, где розетки устанавливаются на расстоянии не более 6 футов от верхнего края чаши раковины, лодочных домах. , ванны или душевые кабины, в которых емкости установлены в пределах 6 футов от края ванны или душа, зоны стирки, на открытом воздухе, за исключением приемников, которые труднодоступны и питаются от ответвленной цепи, предназначенной для электрического таяния снега, удаления льда или Оборудование для обогрева трубопроводов и сосудов должно быть установлено в соответствии с NEC 426.28 или 427.22 в зависимости от обстоятельств. (NEC 210.8 (A)) [2]

На строительных площадках требуется защита GFCI.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *