Как соединить два радиатора отопления между собой: Биметалл: как соединить радиаторы отопления между собой в одну батарею

Содержание

Биметалл: как соединить радиаторы отопления между собой в одну батарею


Не всегда система отопления выполнена тщательно, в итоге – когда тепла недостает, а когда жарит вовсю. В первом случае мы чувствуем дискомфорт, во втором – платим лишние деньги за энергоносители. Ситуация чем-то напоминает ту, когда батареи горячие, а в квартире холодно, правда, причины несколько иные. Здесь же решение простое: чтобы снизить теплоотдачу нужно убрать лишние секции, а для увеличения нагрева – добавить недостающие элементы. Поэтому есть смысл освоить несложную технологию сборки радиаторной системы.

Зачем наращивать мощность отопительных батарей

 


Необходимость размышлений о том, как соединить радиаторы отопления между собой, может возникнуть только по одной причине – недостаток теплоотдачи. Иными словами, температурный режим не способствует комфортному проживанию в доме. Вполне возможно, что все это следствие неправильной работы котельного оборудования или засор системы, но это тема для отдельного разговора.

Мы же обсудим погрешности при расчете схемы отопления, ведь это частая причина его неудовлетворительной работы. Да что там говорить, когда не учитываются материал стен дома/квартиры, степень их теплоизоляции, высота потолка.

Сколько нужно секций?

Отопительные приборы из биметалла известны не только большим запасом прочности и отличными показателями теплоотдачи. Узлы с ниппельным соединением весьма удобны в плане подбора нужного количества секций. Для определения необходимого числа ребер существует простая формула: K=S(100/R), где

  • K – количество секций.
  • R – теплоотдача секции.
  • S – площадь помещения.

Допустим, имеем радиаторы Global Mix К с теплоотдачей 145 Вт и комнату на 16 м². По формуле для оптимального обогрева помещения достаточно обогревательного прибора на 11 секций. После выполнения расчетов уже можно думать о том, как соединить биметаллические радиаторы между собой в единую систему.


Есть возможность поступить проще: посчитать количество ребер из расчета одна секция на 2 м². Оба способа вполне рабочие, но для комнат высотой до трех метров. Нельзя забывать и о поправочных коэффициентах:

  • В помещениях с несколькими окнами отопительные приборы ставят под каждым оконным проемом. При этом общее количество секций разделяют на количество окон.
  • Число секций для угловых помещений умножают на коэффициент 1,2.
  • Для помещения, имеющего энергосберегающее остекление, при размещении батарей из биметалла применяется такой же коэффициент, но с понижающим знаком.

Важно! Максимальное число радиаторных секций – 16. Если по расчетам у вас большее количество, то батарею нужно разделить на две части.

 


Как самостоятельно соединить радиаторы отопления между собой: подготовительный этап

Чтобы собрать отопительный прибор, понадобятся следующие инструменты и арматура:

  • Ключ разводной.
  • Ключ радиаторный.
  • Ниппели (идут в комплекте с секциями).
  • Паронитовые прокладки.
  • Эластичные межсекционные уплотнители.
  • Две заглушки: с правой и левой резьбой.
  • Наждачная бумага №120.
  • Рабочие перчатки.

Если предполагается работа с уже установленными батареями, то в первую очередь нужно перекрыть доступ воды к отопительным приборам. После этого их отсоединяют, очищают от пыли и известковых отложений. Кстати, по ходу модернизации можно избавиться от ситуаций, когда плохо греют биметаллические радиаторы или нарушены правила их установки.


Отложения известкового или другого характера отлично удаляются наждачной бумагой. Пренебрегать процедурой очистки не стоит, иначе загрязнения станут причиной негерметичности соединений, а по-простому – течи.

Как соединить секции биметаллических радиаторов между собой: пошаговая технология

  • Батарею положить на горизонтальную поверхность, демонтировать дополнительные компоненты: кран, термодатчик и т.п. При необходимости промыть радиаторный узел мощной струей воды, в тяжелых случаях придется использовать химсредства.
  • Осмотреть резьбовые соединения на предмет сохранности. Отложения удалить при помощи наждачки.
  • Проверить состояние ниппельной резьбы, она должна быть ровной, без сколов и с равномерной нарезкой.

  • Чтобы нарастить радиатор, нужно приставить к нему дополнительную секцию, заранее вложив между ними прокладки.
  • Используя радиаторный ключ, аккуратно закрутить ниппель, с одной стороны у него правая резьба, а с другой – правая. Благодаря этому при закручивании обе секции одновременно прижимаются друг к другу.
  • Наживив резьбу, проконтролировать ровность стыков, зажать соединение до упора. На каждой секции количество оборотов ниппеля должно быть одинаковым.

 


Как видите, увеличить теплоотдачу отопительного узла вполне по силам каждому домовладельцу. Осталось освоить установку и подключение биметаллических радиаторов отопления к системе, но об этом в следующей статье. А пока собранную систему надо проверить на герметичность.

Простой тест

Проверить в домашних условиях качество сборки батареи лучше сжатым воздухом. Процедура несложная, но требующая выполнения определенной подготовительной процедуры. Для этого понадобятся:

  1. Ниппель от бескамерного автомобильного колеса.
  2. Кран диаметром 15 мм и гайка-американка.
  3. Воздушный насос с манометром.

Со стороны наружной резьбы крана вставить ниппель и зажать его накидной гайкой-американкой. Для тестирования достаточно создать давление около 1 атмосферы. Если слышен свист воздуха, значит, не все соединения надежны – необходимо проверить состояние прокладок и фиксацию радиаторных ниппелей. Только после проверки отопительный прибор можно установить и подсоединить к системе.

Коротко об установке радиаторов отопления из биметалла в частном доме или квартире

Итак, вы решились пройти все этапы организации отопления в своей квартире. Особо сложного ничего в этом нет, достаточно придерживаться определенных правил:

  • Перед началом установки обязательно убедитесь в отсутствии теплоносителя в системе.
  • Проверьте комплектацию и качество сборки батареи.
  • Узел соединения фитингов нуждается в прокладке, в качестве которой используют лен с герметиком или нити специального назначения.
  • Согласно основным правилам установки биметаллических радиаторов отопления в квартире или частном доме важно, чтобы подоконник не закрывал их полностью. Кто озабочен эстетической стороной вопроса, стоит посмотреть материал о том, как и чем закрыть батареи отопления.
  • Проектируя систему, нужно знать все возможные схемы подсоединения отопительных приборов (диагональная, нижняя, боковая). Определитесь, какая конструкция приемлема в ваших условиях, учитывая, что для биметаллических батарей диагональная схема дает самый оптимальный результат.
  • В момент пуска системы отопления краны нужно открывать плавно, не допуская резкого выкручивания. В противном случае возможен засорение или гидроудар.
  • Воздух из системы выводят через кран Маевского или другой воздухоотводчик.

 

 



Поделиться в социальных сетях

Как соединить радиаторы отопления между собой

как соединить радиаторы отопления

Технические параметры системы отопления влияют на создание комфортного микроклимата в жилых, производственных и административных помещениях. Она зависит от правильного выбора оборудования и соблюдения технологии монтажа. Как соединить радиаторы отопления в единую систему, которая обеспечит обогрев частных домов и квартир с максимальной эффективностью? Сначала необходимо определиться с конструктивными особенностями сети и способом подключения батарей.

Варианты схем отопления

Для соединения радиаторов и других элементов отопительной системы используют однотрубную и двухтрубную схемы. Первый вариант можно использовать при монтаже сетей с естественной циркуляцией в одноэтажных частных домах и с принудительной — в многоквартирных зданиях. Однотрубная схема отличается экономным расходом материалов и не предусматривает регулирование степени нагрева отдельных приборов отопления.

К другим недостаткам такой системы относятся:

  • неравномерное прогревание батарей, расположенных на разных этажах или на значительном расстоянии друг от друга. Оно возникает из-за постепенного остывания теплоносителя в процессе циркуляции;
  • невозможность отключения одного прибора отопления для проведения ремонтных или профилактических работ.

В частных домах, высота которых составляет 2-3 этажа, востребована двухтрубная схема отопления. При ее монтаже радиаторы соединяются между собой параллельно, а циркуляция теплоносителя осуществляется по двум контурам. По прямому трубопроводу нагретая рабочая среда подводится к батарее, а по обратному происходит отток остывшей воды к отопительному котлу. Для двухтрубной схемы характерно значительное увеличение количества материалов, необходимых для ее монтажа. Среди преимуществ такой сети — равномерный прогрев всех приборов и возможность контролировать температуру отдельно в каждом из них.

Способы подключения радиаторов

Помимо схемы отопления важно правильно подобрать способ подсоединения батарей к отопительному контуру. Различают следующие варианты подключения:

  • боковое. Оно востребовано в квартирах многоэтажных домов, где развязка труб сооружается вертикально. При боковом подключении верхний патрубок батареи соединяется с трубопроводом, по которому подается нагретый теплоноситель, а нижний — с обратным. Если сделать наоборот, то КПД прибора отопления уменьшается на 7%. Боковое подключение применяется для батарей, у которых количество секций не превышает 12-15;
  • диагональное. При таком подключении прямой трубопровод соединяется с верхним патрубком радиатора, а обратный — с нижним патрубком, находящимся на противоположной стороне. Диагональный способ отличается максимальной эффективностью, поскольку обеспечивает равномерный прогрев отопительного прибора и теплоотдачу по всей его поверхности. Он может использоваться для подключения приборов отопления с большим количеством секций. Однако такой вариант усложняет монтаж и дальнейшее обслуживание. Поэтому вместо 14-16 секционных громоздких конструкций целесообразно использовать 2 радиатора, которые состоят из 7-8 секций.

Наименее востребованным является нижнее подключение, которое обычно используется при монтаже однотрубной схемы, где происходит последовательное соединение радиаторов. Чтобы избежать потерь по теплоотдаче, в удаленных от котла батареях увеличивают количество секций или используют циркуляционный насос. При выборе второго способа решения проблемы неравномерного прогрева следует учитывать, что система становится энергозависимой.

Нюансы соединения батарей

В современных отопительных системах для объединения радиаторов в единый контур чаще всего используют полипропиленовые трубы.

Для них характерно следующее:

  • как соединить радиаторы отопления полипропиленовыми трубамиспособность выдерживать высокое давление;
  • небольшой вес;
  • продолжительный срок службы, составляющий до 50 лет;
  • отсутствие склонности к появлению ржавчины;
  • низкий показатель шероховатости, благодаря которому на внутренней поверхности не образуются отложения.

Трубы из полипропилена экологически безопасны и не выделяют вредных компонентов при эксплуатации. Для обвязки приборов отопления используют армированные стекловолокном или алюминием. Для соединения батарей потребуются переходники, заглушки, краны, клапан с терморегулятором и другие виды трубопроводной арматуры, а также специальный инструмент. Если предполагается увеличение секций радиаторов, понадобятся ниппели, межсекционные и паронитовые прокладки. Чтобы зафиксировать приборы на стене, следует позаботиться о креплениях.

Как соединить батареи отопления? Для этого необходимо выполнить следующие действия:

  • наметить месторасположение кронштейнов и зафиксировать их на стене;
  • установить радиаторы, располагая горизонтально, причем отклонение не должно превышать 1°;
  • соединить приборы с трубами и трубопроводной арматурой.

После сборки проводят проверку системы отопления с целью обнаружения дефектов и протечек. Для этого контур заполняют теплоносителем и осматривают все соединения, выявляя места разгерметизации. При наличии дефектов содержимое сети сливают и устраняют неполадки.

На эффективность системы отопления влияет не только способ подключения, но технические характеристики батарей. Выпускаемые компанией Lammin алюминиевые и биметаллические радиаторы серий Eco и Premium обеспечивают максимальную теплоотдачу благодаря увеличенной массе и эргономичной конструкции. Они отличаются идеально гладкой внутренней поверхностью и не склонны к появлению различных отложений. Низкий коэффициент шероховатости достигается за счет покрытия металла цирконием.

Двухступенчатая покраска с применением анафореза позволяет изделиям долго сохранять привлекательный вид: защитный слой не растрескивается и остается белоснежным в течение всего периода службы. Радиаторы Lammin производятся в соответствии с требованиями ГОСТ 31311-2005 и рассчитаны на эксплуатацию в условиях РФ.

Соединение биметаллических радиаторов отопления между собой

Сборка новой системы отопления проводится с учетом мощности всех приборов. При правильных расчетах радиаторы и трубопровод подают нужное количество тепла. Но если не учитываются теплопотери из-за больших окон, проемов дверей или малого утепления дома, приходится наращивать секции батарей. Качественные радиаторы отопления позволяют не только дополнить, но и убрать элементы. Рассмотрим, как соединить биметаллические радиаторы между собой, что потребуется для выполнения работ своими руками.

Когда приходится наращивать секции радиаторов отопления?

Дополнять количество секций нужно только при нарушении температурного режима в помещении. Это происходит из-за снижения теплоотдачи агрегата, например, если допущены ошибки в расчетах. Но часто бывает и так, что в доме прорубаются новые окна, оборудуются дополнительные двери и с течением времени устаревает изоляционная прослойка – в этих случаях также снижается уровень получения тепла и нужно добавлять секции.

К сведению! Перед тем как ставить дополнительные элементы, следует проверить работу котла. Иногда перебои с нагреванием случаются вследствие нарушения функциональности, образования отложений внутри магистрали.

Следует знать, что стыковать можно не все биметаллические приборы отопления, в продаже предлагаются два типа изделий:

Рекомендуем к прочтению:

  1. Секционные. Это приборы, которые допускаются к интеграции в магистралях централизованной подачи тепла, состоят из отдельных секций. Сборка не доставит сложностей, как и наращивание ширины прибора.
  2. Литые. Выпускаются в цельной форме, без возможности наращивания или убавления количества секций. Пригодны для применения в тепловых системах с нестабильным давлением, проверяются под показателями давления в 100 атмосфер. Такие приборы дорого стоят, поэтому нужно тщательно просчитать все параметры мощности с учетом теплопотерь дома – изменить мощность таких радиаторов не получится.

На заметку! Покупая секционные батареи из биметаллического сплава, которые можно нарастить, хозяин дома получает возможность установки отдельного режима в каждой комнате.

Техника наращивания секций в биметаллическом радиаторе

Если мастер уже сталкивался со сборкой системы теплоподачи, то наращивание батарей отопления не доставит больших хлопот. Сначала требуется выполнить простые расчеты, определяя мощность батарей, а затем рассчитать количество дополнительных секций.

Совет! Чтобы посчитать мощность прибора, нужно учитывать показатель теплоотдачи каждой секции – параметры указываются в техническом паспорте прибора.

Инструменты и материалы для выполнения работ

Чтобы сборка радиатора отопления своими руками была проведена быстро, мастеру пригодятся:

  • дополнительные секции;
  • наждачная бумага средней фракции;
  • радиаторный ключ;
  • гаечный или разводной ключ;
  • заглушки – их должно быть 2 – с правой и левой резьбой;
  • ниппели, обычно идут в комплекте с прибором отопления или его секцией;
  • эластичные прокладки для установки между секциями;
  • паронитовые прокладки.

Не лишним будет запастись перчатками и маской – при зачистке элементов наждаком будет немного пыли. А теперь подробнее о том, как подсоединить батарею.

Рекомендуем к прочтению:

Поэтапные работы по присоединению секций батареи

Перед тем как соединить два радиатора, необходимо подготовить магистраль отопления. Сначала нужно отключить циркуляцию теплоносителя и снять батарею. Сегодня все биметаллические приборы выпускаются с оснащением шаровым краном, поэтому можно демонтировать батарею даже при циркулирующем теплоносителе, например, в многоэтажном доме.

Важно! В биметаллическом радиаторе не может быть более 16 секций. Если требуется больше тепла, то формируется два отдельных отопительных прибора.

Теперь поэтапная сборка радиатора отопления своими руками:

  1. Демонтированный агрегат нужно уложить на ровную поверхность. Очистить от пыли и промыть изнутри для устранения накипи, отложений. Лучше всего выполнять промывку в ванной комнате, предварительно застелив дно ванной ветошью.
  2. Промывка выполняется так – залить внутрь батареи специальное средство для размягчения отложений, затем дать время составу подействовать, слить отработку, промыть прибор изнутри проточной водой.
  3. Проверить резьбовые стыки на торцах, резьба должна быть целой. Если в зоне стыка есть ржавчина, наросты или отложения, их нужно счистить наждаком. Чистую резьбу протереть ветошью, чтобы убрать возможные загрязнения, которые нарушают герметизацию приборов.
  4. Сухой и промытый радиатор уложить на пол. Удобнее работать, если полы застелены мягкой ветошью, так приборы не будут биться о напольное покрытие, не повредят как отделку, так и защитный верхний слой. Ровная горизонталь требуется для точного соединения без перекосов – малейшие отклонения при стыковке приведут к образованию зазоров, течи.
  5. Проверить качество ниппелей, резьбу на них и целостность гнезд, выложить паронитовые прокладки. Если на резьбе ниппелей есть сколы, а гнезда разбиты, детали нужно заменить.
  6. Сдвинуть секции между собой так, чтобы между ними оказались зажаты ниппели и паронитовые прокладки.
  7. Осторожно начать закручивать ниппель. С одной стороны детали резьба левая, а другая сторона оснащена правой резьбой, поэтому в процессе выполняется притягивание секций в равномерном порядке.
  8. Работы выполняются радиаторным ключом, который поможет не только выполнить соединение радиаторов отопления между собой, но и разобрать их, чтобы открепить ненужные секции. Для открепления ниппель крутится ключом в другую сторону.
  9. Немного притянув ниппели, проверить ровность стыка, закрутить ниппели до прочности на одинаковое количество оборотов.

Важно! Следует внимательно считать количество поворотов ниппеля на каждой секции, чтобы не допустить перекоса радиатора.

Зная, как увеличить батарею отопления, мастер всегда сможет обеспечить качественный прогрев помещений, но только в случае использования секционных радиаторов. После стыковки деталей прибор нужно проверить на герметичность. Сделать это можно посредством залива в батарею подкрашенной жидкости. Закрыть заглушки, оставить прибор на несколько часов, иногда для тестирования требуются сутки, а затем осмотреть стыки – если протечек нет, то сборка проведена правильно, радиатор установить на место, запустить систему в эксплуатацию.

Совет! При необходимости установки батареи в систему отопления сразу после наращивания, для проверки герметизации применяется мыльная вода. Намочить губку, протереть зоны стыка – если есть утечка, то мыло будет пениться.

способы соединения и можно ли это делать?

Даже выполнив правильно все расчеты по определению количества секций батареи отопления, может случиться так, что они дают недостаточно тепла.

Так происходит, если производитель завысил параметры изделия в техпаспорте или потребитель не учел всех теплопотерь в помещении.

Добавление секций на алюминиевые радиаторы позволяет решить эту проблему.

Типы подключения батареи к отопительной системе

Когда возникает необходимость нарастить радиатор, очень важно соблюсти все правила демонтажа старой секции в случае ее поломки или установки новой для увеличения его теплоотдачи. Если новый элемент будет подсоединен неправильно, то эффективность всей конструкции может уменьшиться на 40-50%. Это проявится в виде неравномерного прогрева всех секций или даже прорыва в местах их соединения.

Важным фактором является то, каким способом подключена батарея к отопительной системе, потому что нарушение схемы всегда приводит к теплопотерям. Как правило, алюминиевые радиаторы отопления подключаются:

  • Последовательным подсоединением, которое применяется в однотрубных системах отопления. Считается самым финансово выгодным типом подключения, так как при нем задействовано меньше стройматериалов, но менее эффективным в качестве обогрева жилья. Как правило, в этом случае те обогреватели, что находятся ближе к котлу, будут горячими, а по мере удаления от него все холоднее.
  • При параллельном типе используются две трубы, которые подсоединяются к радиатору через верхний и нижний отделы. Обеспечивает самый лучший нагрев, так как теплоноситель равномерно распределяется по всем элементам системы. Этот тип подключения позволяет устанавливать терморегуляторы, что дает пользователю возможность самому решать, какое количество тепла ему нужно.
  • Сквозное подсоединение обеспечивает теплоносителю беспрепятственный проход через всю систему без «остановок» в батареях отопления.

Соединение секций алюминиевых радиаторов и последующее подключение к теплосети должны проводиться строго по схеме в определенной последовательности, чтобы они были не только эффективными, но и экономичными.

Необходимые для работы инструменты

Если наращивание производить своими руками, то предварительно следует позаботиться о наличии необходимых инструментов. В набор входят:

  • Радиаторный ключ, стандартный для всех типов батарей.
  • Специальные ниппеля, с помощью которых производится соединение алюминиевых радиаторов отопления между собой.
  • Трубный ключ.
  • Заглушки для боковых отделов с левой и правой нарезкой.
  • Паронитовые или другие межсекционные сальники для батарей отопления.
  • Наждачная шкурка.

Приобрести эти инструменты можно в любом магазине стройматериалов.

Подготовка к работе

Чтобы присоединить секции алюминиевого радиатора, владельцам квартир с централизованной системой обогрева придется подать заявление в управляющее хозяйство с просьбой на проведение работ. Обладателям автономного обогрева подобная процедура не нужна.

Перед тем, как соединять секции, следует провести подготовительные работы.

  • Во-первых, слить весь теплоноситель из батареи.
  • Во-вторых, демонтировать ее.
  • В-третьих, проверить на наличие мусора или накипи, и в случае обнаружения удалить их.
  • В-четвертых, проверить места соединения радиатора с трубой отопительной системы. Если есть какая-либо накипь или наросты, их следует удалить при помощи наждачной бумаги.

Только после проведения подготовительных работ можно приступать к наращиванию радиатора с полной уверенностью, что все его элементы будут соединены герметично.

Соединение секций

Чтобы все элементы были подсоединены правильно, радиатор нужно положить на ровную поверхность внешней стороной к себе. Последовательность действий наращивания следующая:

  • Заглушки откручиваются от торцевых соединительных отделений.
  • На ту часть ниппеля, где нет резьбы, нужно надеть прокладку.
  • Вставить ниппель в коллектор алюминиевого радиатора и слегка провернуть несколько раз.
  • Подготовленную для подсоединения секцию соединить с другой стороной ниппеля.
  • Взять ключ и не спеша затянуть ниппель. Благодаря тому, что у него на разных концах находится противоположная резьба, его стороны будут закручиваться одновременно.
  • Довести закручивание до предела, пока он не упрется в прокладку.

Следует ниппеля верхнего и нижнего коллектора закрутить одинаковое количество раз, чтобы не получился перекос в одну из сторон. Для этого подсчитывается, сколько было сделано витков.

Перед тем как монтировать увеличенный радиатор к трубе отопления, нужно проверить, насколько герметично проведено наращивание. Для этого необходимо наполнить батарею подкрашенной водой и пару часов проследить, нет ли утечки.

Повесив конструкцию на стену, можно приступать к последнему этапу работ.

Испытательные работы

Как правило, при каждом ремонте или демонтаже (установке) радиаторов, они должны пройти тестирование на качество проделанной работы и целостность системы. Для этого места соединения батареи с трубопроводом плотно закручиваются трубным ключом, и система тщательно проверяется на наличие дефектов, после чего можно пускать теплоноситель.

Первичная проверка проводится под небольшим напором, чтобы проследить, не проявится ли где-то течь. Если будет обнаружен дефект, то теплоноситель отключается, и проводятся работы по его устранению.

При следующей попытке вода в систему подается под обычным напором и остается в ней на пару-тройку часов. Когда они пройдут, нужно проверить все места соединений на герметичность.

Без специальных навыков иногда демонтаж и наращивание новых секций трудно правильно произвести с первого раза, поэтому этап проверки качества сделанной работы игнорировать нельзя. В целом, при наличии всех инструментов и выполнении последовательности работ, можно даже соединить два алюминиевых радиатора между собой своими руками.

Полезное видео

Как соединить биметаллические радиаторы между собой и батареи отопления, собрать

Сборка системы отопления подразумевает тщательный просчет мощности обогревателей, трубопроводов. Если тепла недостаточно, в доме будет холодно. Избыток нагрева приводит к повышению затрат на энергоносители, уменьшению срока службы сети. Чтобы понизить теплоотдачу, надо отсоединить секции, для повышения нагрева – прикрутить дополнительные. Рассмотрим, как соединить биметаллические радиаторы между собой, установить их на место и запустить сеть в работу.

В каких случаях требуется нарастить секции радиаторов отопления

Теперь чтобы скачать приложение от 1xBet на свой Андроид телефон достаточно перейти по ссылке и скачать APK файл. Больше нет необходимости искать официальный сайт букмекерской конторы.

Потребность наращивания возникает только при недостаточности теплоотдачи. В этом случае в доме не поддерживается оптимальный нагрев. Чаще всего погрешности допускаются при расчете схемы отопления, когда данные берутся без учета высоты потолка, материала дома и степени утепления.

Совет! Снижение теплоотдачи возникает при неверной работе котла и отложении мусора внутри оборудования сети. Перед наращиванием приборов надо проверить котел, промыть магистраль.

Продумывая вопрос стыковки секций, необходимо определиться с типом нагревателей. Соединение радиаторов отопления между собой доступно не для всех видов приборов.

Производители предлагают два типа моделей:

  1. Литые. Это изделия цельной формы, не пригодные к наращиванию. Применяются батареи в сетях с нестабильными показателями давления. Выдерживают удары до 100 атм. Покупая литые устройства, требуется точный расчет мощности. Уменьшить или увеличить нагрев не получится.
  2. Секционные. Доступные по стоимости прочные батареи применяются в централизованных и автономных сетях. Конструктивно представляют собой некоторое количество секций, стыкованных между собой. Радиаторы можно наращивать.

Совет! В комплекте отопительных приборов бывают дополнительные прокладки, заглушки, ниппели. Если их нет, расходники надо купить самостоятельно с учетом нужного размера. Элементы пригодятся при наращивании секций и замене в процессе эксплуатации.

Техника выполнения работы по соединению секций радиатора

Наращивание батарей отопления – полезный навык для домашнего мастера. Зная, как стыковать секции, не составит труда обеспечить собственный микроклимат в каждой комнате.

Рекомендуем к прочтению:

Перед тем как соединить два радиатора, делают расчет мощности. Формула проста – на 10 м2 требуется 1 кВт тепловой мощности. Производительность секции указана в техпаспорте. Эти данные пригодятся для расчетов. После нужно купить необходимое количество элементов, найти инструменты и собрать нагревательный прибор.

Инструменты и комплектующие для работы

Для сборки радиатора отопления своими руками пригодятся:

  • ключ гаечный или разводной;
  • радиаторный ключ;
  • заглушки с правой и левой резьбой – по 1 шт.;
  • ниппели;
  • прокладки паронитовые;
  • межсекционные прокладки из прочного, гибкого материала;
  • секции батареи;
  • наждачная бумага фракции №120.

Для защиты пригодятся нитяные перчатки. Батареи удобнее устанавливать вдвоем, помощник не помешает.

Поэтапный процесс наращивания батареи

Сборка радиатора отопления своими руками выполняется в любое время. Если отопительный сезон уже начался, сеть надо перекрыть, слить теплоноситель из контура и демонтировать отопительный прибор.

Важно! Предельный максимум секций в биметаллическом радиаторе – 16 штук. Если надо больше, придется ставить две батареи с равным или неравным числом секций.

Как подсоединить батарею:

Рекомендуем к прочтению:

  1. Демонтированный радиатор уложить на горизонтальную плоскость. Чтобы не поцарапать покрытие батареи и стола (пола), настелить ткань. Снять все дополнительные элементы – краны, термодатчики. Для промывки батарею унести в ванну, открыть заглушки и промыть струей воды.

На заметку! Для удаления стойких и толстых слоев накипи применяют специализированные средства. Химические составы продаются в магазинах. Инструкция содержит данные по использованию для радиаторов из разных материалов.

  1. Проверить целостность резьбовых соединений, торцов отопительного прибора. Если есть наросты отложений, стыки обработать наждаком.
  2. Снова уложить батарею на ровную горизонтальную поверхность. Участок выбирается ровный для обеспечения герметичности стыка. Малейшая кривизна положения приведет к неровности стыка.
  3. Для уплотнителей выбирают только паронитовые прокладки. Это прочный, гибкий материал, переносящий нагрев без потери качества.
  4. Проверить качество резьбы ниппелей. Ровная и равномерная нарезка без сколов – залог прочной стыковки.
  5. Сдвинуть секции, вложив между ними прокладки.
  6. Осторожно начать закручивать ниппель. Деталь имеет с одной стороны левую резьбу, с другой – правую. Это значит, что при вращении притягиваются обе секции. Работы удобнее выполнять со специальным радиаторным ключом. Инструмент может идти в комплекте с батареей, но также продается отдельно.

Совет! Чтобы разобрать батарею, ключом откручивают ниппель в обратную сторону.

  1. Немного прихватить секции, проверить ровность стыков и затянуть до герметичности. Количество оборотов витков ниппеля на каждой секции должно быть равным.

Зная, как увеличить батарею отопления, несложно собрать систему с необходимыми показателями мощности. После наращивания секций радиатор проверяют на герметичность.

Для бытовой проверки потребуется:

  • кусок трубы сечением в 15 мм;
  • насос автомобильный с манометром;
  • ниппель от покрышки.

Теперь ниппель припаять к трубе, а ее вставить в радиатор. Эта конструкция нужна для опрессовки воздухом. Установить на одно из входных отверстий радиатора заглушку. К ниппелю подключить автомобильный насос с манометром. Закачивать воздух с давлением в 1 бар. Если герметичность стыков нарушена, появится свист выходящего воздуха. Надо найти протечку, подтянуть ниппель или поменять прокладку. Провести опрессовку еще раз. При отсутствии протечек установить радиатор в сеть.

Опрессовка водой проводится в том же порядке. Вместо воздуха закачивается подкрашенная вода. Прибору дать постоять 5 часов, обследовать на протечки. Если есть негерметичный стык, вода просочиться. Подтянуть стыки, проверить еще раз, установить батарею в систему.

Наращенная батарея увеличивается по весу. Перед монтажом радиатора желательно упрочнить крепежи, вкрутить дополнительные кронштейны. Это убережет прибор от обрушения, ведь с теплоносителем батарея будет еще тяжелее. В сеть прибор встраивается в выбранном месте с учетом увеличения длины батареи.

На заметку! В квартирах менять зону расположения радиатора нельзя. Действие считается незаконной перепланировкой. Надо получить разрешение в управляющей компании на увеличение количества секций устройства.

схема, инструкция, как подключить два и более батареи

Последовательное подключение радиаторов — наиболее популярный и экономичный вариант обогрева помещения, благодаря которому создаётся автономная, независящая от центральной, отопительная система.

Необходимый инструментарий

Для формирования такого соединения приборов отопления потребуются следующие составляющие:

  • Трубы: для главной магистрали желательно выбирать трубопровод из стали, оцинковки или металлопластика с соответствующими диаметрами 2,2 см, 2,2 см и 2,6 см. А также допускаются к использованию полипропиленовые трубы, но только не в системе с тремя и более радиаторами. Отходящие от магистрали патрубки изготавливаются из тех же материалов, но имеют меньшие диаметры.

Фото 1. Металлопластиковые трубы разного диаметра в разрезе: видна прослойка из металла между двумя слоями пластика.

  • Радиаторы: выбор необходимого оборудования осуществляется на основании личных предпочтений и советов специалиста. Для подобной схемы самым оптимальным считается 5 батарей, а для большего их количества требуется грамотно рассчитанный проект.
  • Ленты для уплотнения резьбы на батареях.
  • Термостатические клапаны для регулировки нагрева радиаторов.
  • Фитинги для соединения труб между собой.

Непосредственными составляющими являются также расширительный бак и отопительный котёл.

Подготовительные действия

Перед началом процесса рассчитывается подробный проект системы отопления для каждого конкретного помещения.

Затем выбирается один из вариантов последовательного подключения: горизонтальный или вертикальный исходя из особенностей жилой площади и личных предпочтений.

Затем, ориентируясь на выбранный тип схемы, требуется определиться с теплоносителем. При вертикальной развязке лучше использовать антифриз, разбавленный в воде, а при горизонтальной — обычную воду.

Как подключить два радиатора отопления, схема

  1. Изначально при последовательном соединении определяется месторасположение отопительного котла. Его располагают, как правило, в подвальном помещении на специальной противопожарной платформе. Над ним крепко фиксируется расширительный бак.

Внимание! Высота расширительного бака относительно котла должна составлять не менее трёх метров.

  1. При этом продумывается грамотная настройка дымохода: тяга должна быть достаточной, а сам дым выходить наружу, не оставаясь внутри помещения.
  2. После производится подключение магистрального трубопровода. Важно избегать изгибов при прокладке.
  3. По периметру всего дома проходит труба, параллельно которой врезаются все батареи.

Фото 2. Схема последовательного подключения батарей в однотрубной системе с котлом и циркуляционным насосом.

  1. Радиаторы размещаются под оконными проёмами.
  2. Замыкаться такая схема должна на отопительном котле.

Внимание! Перед котлом рекомендуется поместить фильтр, очищающий теплоноситель от любых примесей.

  1. А также необходимо предусмотреть элемент, через который будет производиться заполнение системы водой и её слив.
  2. В последовательной схеме подключения, можно дополнять кранами и терморегуляторами каждую батарею.

При вертикальной обвязке в схему включают для принудительной циркуляции теплоносителя циркуляционный насос, а при горизонтальной — создаётся уклон трубы подачи, и перед каждым радиатором монтируется кран Маевского для удаления из системы излишков воздуха.

Плюсы и минусы последовательного подключения батарей

Плюсы последовательного подключения:

  • низкая стоимость расходного материала;
  • допускается использование любых видов радиаторов;
  • при необходимости трубопровод заводится в «тёплый пол»;
  • охват приборами отопления всего периметра комнаты;
  • лёгкий монтаж;
  • небольшое количество расходуемого материала.

Минусы:

  • сложное проектирование процесса;
  • высокий коэффициент потерь тепла: из-за характерной вытянутости такой магистрали теплоноситель к концу охлаждается;
  • при отсутствии циркуляционного насоса возникают застои перемещаемой по радиаторам жидкости и снижение эффективности работы системы в целом;
  • при отсутствии терморегуляторов на батареях — отсутствие контроля над подачей тепла.

Полезное видео

Посмотрите видео, в котором показан пример последовательного подключения радиаторов в частном доме.

Помощь профессионалов

При проведении последовательного подключения радиаторов необходимо проконсультироваться со специалистами по части разработки полноценного проекта. Для исключения различного рода просчётов рекомендуется доверить им ведение этого процесса под ключ.

Какие бывают радиаторы и чем они отличаются

Часто в повседневной жизни, применительно к отоплению, можно услышать слово «батарея». Так вот об этих батареях, а правильнее сказать радиаторах или приборах отопления и пойдет речь.

В прежние времена батарея была массивным, сто раз окрашенным, чугунным изделием под подоконником, которая плохо или хорошо, но выполняла свою функцию — отапливать помещение….

Сегодня батарея — это радиаторы или конвекторы, которые могут иметь различную конструкцию и форму, изготавливаться из разных материалов, окрашиваться в различные цвета радуги, быть элементом  дизайна помещения и позволяющие регулировать температуру под ваши индивидуальные запросы (даже автоматически).

Итак, популярно об отопительных приборах:

Какие бывают радиаторы и чем они отличаются

По конструкции все гидравлические отопительные приборы  можно разделить на четыре основных типа: секционные, панельные, трубчатые (к ним относятся и полотенцесушители) и конвекторы.

Секционные отопительные приборы

Такие приборы состоят из отдельных нагревательных элементов-секций. Секционными могут быть отопительные приборы из алюминия, чугуна, стали, а также так называемые биметаллические (имеющие алюминиевый корпус и стальную трубу, по которой движется теплоноситель). Секции соединяются между собой при помощи ниппелей, а между секциями устанавливаются уплотнения. Чаще прокладки изготавливаются из резины, что нормально при использовании воды в качестве теплоносителя, но недопустимо при использовании в качестве теплоносителя антифриза, т.к. резина может быть разрушена его агрессивным воздействием (в таких случаях в современных отопительных приборах применяются специальные уплотнения).


Панельные (несекционные) отопительные приборы

В основном это стальные панельные радиаторы. Конструкция панельного радиатора — это грубо говоря два сваренных между собой стальных листов (толщиной, обычно, 1,25 мм ) с вертикальными каналами, в полости которых циркулирует теплоноситель. Для увеличения нагреваемой поверхности, а, как следствие, теплоотдачи к тыльной стороне панели приварены стальные П-образные рёбра.


Трубчатые отопительные приборы

В большинстве случаев конструкция таких радиаторов состоит из вертикально расположенных изогнутых стальных трубок, соединяющих верхний и нижний коллекторы. Стоит отметить, что стальные трубчатые радиаторы — это обычно наиболее дорогой тип радиаторов (в пересчете на 1 кВт).


Конвекторы (или пластинчатые отопительные приборы)

Конвектор, образно говоря, — это одна или несколько труб (по которым движется теплоноситель) с «надетыми» на них металлическими «ребрами-пластинами». Воздух проходит сквозь конвектор снизу вверх, нагреваясь от многочисленных теплых оребрений.

Трубы таких отопительных обычно изготавливаются из стали или меди. В некоторых конвекторах величина теплового потока регулируется специальной заслонкой, открывая или закрывая которую, можно увеличить или уменьшить поток движущегося нагретого воздуха. Конструкция конвектора может быть совсем открытой или закрытой декоративным кожухом (в настенных и плинтусных вариантах). Конвекторы встраиваемые в пол накрываются декоративной решеткой.

Все об алюминиевых радиаторах

Преимущества алюминиевых радиаторов:

 — алюминиевые радиаторы имеют очень хорошую теплоотдачу.

 — алюминиевые радиаторы имеют низкую массу (вес одной секции без воды  около одного кг), что облегчает монтаж.

 — алюминиевые радиаторы имеют привлекательный дизайн и поэтому зачастую потребители делают выбор в пользу алюминиевых радиаторов.

Наиболее распространены модели алюминиевых радиаторов с межцентровым (межосевым) расстоянием 500 мм и 350 мм (также существуют варианты с межосевым расстоянием 200, 400, 600, 700, 800 мм и др.). Необходимая  длина алюминиевого радиатора и соответственно его мощность «набирается» (складывается) из отдельных секций, что позволяет достаточно точно подобрать требуемые для отопления конкретного помещения параметры.

Для подключения алюминиевых радиаторов к системе отопления необходим  монтажный комплект, включающий в себя: от 2-х до 4-х кронштейнов, кран Маевского (воздухоспускной кран ручного регулирования), проходные пробки (переходники) различного диаметра (1/2 дюйма или ¾ дюйма) и направленности (левая или правая) и глухие пробки (заглушки).

По желанию заказчика на подводящих и/или отводящих теплоноcитель трубах можно установить шаровые краны/вентили (для демонтажа радиатора или для экстренного отключения от системы отопления), а также термостатические вентили с термоголовками (для поддержания заданной температуры в помещении).

Существует две технологии производства алюминиевых радиаторов:

 — литые (каждая секция отливается как цельная деталь к которой привариваются донные части).

 — экструзионные — произведенные методом экструзии. При экструзии алюминиевый сплав продавливается через сильеру стальные пластины с отверстиями определенной формы и сечения (экструдеры), в результате чего получают длинные профили определенной формы. После остывания полученные заготовки нарезают по размерам радиатора, после чего привариваются донные и верхние части.

Рабочее давление алюминиевых радиаторов разных производителей отличается достаточно существенно. Можно сказать, что существуют 2 типа алюминиевых секционных радиаторов:

— стандартный «европейский» тип, рассчитанный на рабочее давление примерно 6 атм. Он хорош для применения в коттеджах и других автономных системах отопления.

— «усиленный» радиатор с рабочим давлением не менее 12 атм.

 Недостатки алюминиевых радиаторов:

При контакте алюминия с водой происходит выделение водорода, что при не действующем автоматическом воздухоотводчике (или при отсутствии крана Маевского, регулирующегося вручную)  может привести даже к разрушению секции радиатора.

При использовании алюминиевых радиаторов надо обратить особое внимание на химический состав (pH) теплоносителя в вашей системе отопления. Что при городском централизованном отоплении это сделать почти невозможно. pH теплоносителя должен находиться примерно в пределах рН=7-8. Кроме того, важно помнить, что коррозия, разрушающая алюминиевые радиаторы усиливается при наличии в системе отопления гальванических пар алюминия с другими металлами (например: алюминивые радиаторы + разводка отопительной системы выполненная из медных труб).

Тем не менее, если при проектировании и монтаже системы отопления учесть все требования и рекомендации по установке и эксплуатации алюминиевых радиаторов, то они прослужат вам долго верой и правдой.

Все о биметаллических радиаторах

Биметаллические радиаторы имеют алюминиевый корпус и стальную трубу, по которой движется теплоноситель. Грубо говоря, биметаллический радиатор — это стальной каркас залитый алюминием, теплоноситель в таких радиаторах почти не контактирует с алюминием, т.к. движется по стальным трубкам, которые в свою очередь передают тепло алюминиевым панелям.

Этот тип радиаторов соединил лучшие свойства алюминиевых радиаторов с полезными качествами стали. Благодаря прочности стали биметаллические радиаторы выдерживают большее давление (для многих из них рабочее давление составляет 20-30 и более атм.) и позволяют снизить требования к качеству (pH) теплоносителя, которые очень существенны при использовании обычных алюминиевых. Кроме того биметаллические радиаторы имеют хорошую теплоотдачу и современный дизайн, внешне такие радиаторы очень похожи на алюминиевые, но стоят несколько дороже.


Биметаллические радиаторы пригодны для использования в городских системах централизованного отопления. Но как и для всех радиаторов, в которых теплоноситель соприкасается со сталью, для «биметалла» вредно повышенное содержание кислорода в теплоносителе, который способствует развитию коррозии стали. Поэтому здесь необходима установка на радиатор автоматического или ручного (кран Маевского)  воздухоотводчика.

Для подключения биметаллических радиаторов к системе отопления необходим  монтажный комплект, включающий в себя: от 2-х до 4-х кронштейнов, кран Маевского, две проходных пробки различного диаметра (1/2 дюйма или ¾ дюйма) и направленности (левая или правая) и одна глухая пробка (заглушка).

По желанию заказчика на подводящих и/или отводящих теплоноситель трубах можно установить шаровые краны, вентили (для демонтажа радиатора или для экстренного отключения от системы отопления), а также термостатические вентили с термоголовками (для поддержания заданной Вами температуры в помещении).

Стальные панельные радиаторы

Стальные панельные радиаторы — одни из наиболее используемых отопительных приборах в системах индивидуального отопления (обычно в загородных домах). Они обладают небольшой тепловой инерцией, а соответственно, с их помощью легче осуществлять регулирование температуры в помещении.

Рабочее давление для большинства моделей стальных панельных радиаторов лежит в пределах 9 атм.

Благодаря широчайшему модельному ряду (ассортимент панельных радиаторов ведущих производителей состоит из нескольких сотен моделей разной глубины, ширины и высоты) можно подобрать оптимальный по параметрам панельный радиатор практически для любого помещения. Стандартная высота этих отопительных приборов равна: 300, 350, 400, 500, 600 и 900 мм (есть и более низкие — 250 мм ), ширина — от 400 до 3000 мм , глубина от 46 до 165 мм .

Если говорить о недостатках, то, что как все стальные отопительные приборы они при контакте с водой подвержены коррозии, чувствительны к гидравлическим ударам и рассчитаны на не очень высокое давление. Они хороши для использования в индивидуальных системах (например в загородных домах и коттеджах), а применять их в городских квартирах надо очень осторожно, внимательно ознакомившись с техническими параметрами и требованиями, указанными производителем.

По разновидности подключения к трубной разводке существует три типа панельных радиаторов — с нижним, боковым и универсальным подключением. В стальных панельных радиаторах с нижним подключением встроен термостатический вентиль, на который можно установить терморегулятор, для поддержания заданной температуры в помещении. Для стальных панельных радиаторов с боковой подводкой комплект подключения входит в стоимость радиатора. Для стальных панельных радиаторов с нижней подводкой  необходимо приобрести узел подключения (подсоединения) Мультифлекс. При этом стоимость радиаторов с нижним подключением немного выше, чем аналогов с боковым подключением.

Производители панельных радиаторов в комплект поставки включают кронштейны (скобы) для размещения радиатора на стене, но можно приобрести специальные ножки для установки его на пол, если размещение на стене по каким-либо причинам нежелательно или невозможно.

По желанию заказчика на подводящих и/или отводящих теплоноситель трубах можно установить шаровые краны, вентили (для демонтажа радиатора или для экстренного отключения от системы отопления).   

В нашем каталоге представлен широкий ассортимент радиаторов, все в наличии на нашем складе в Москве. 



Как установить радиаторы: выбор между последовательным и параллельным

Радиаторы лучше устанавливать последовательно или параллельно ? В этой статье мы объясним разницу между обоими методами установки и поможем вам выбрать между однотрубной системой и двухтрубной системой.

Параллельная установка радиаторов

При установке центрального отопления вам предоставляется выбор между однотрубной системой и двухтрубной системой .Двухтрубная система состоит из, как вы уже догадались, двух отдельных труб: одна для подачи горячей воды к радиаторам, а другая — для отвода отработанной воды обратно в котел. Другими словами, радиаторы установлены параллельно . Хотя, как правило, более дорогая, чем однотрубная система, двухтрубная система является предпочтительным вариантом для современных зданий.

Двухтрубные системы двух разновидностей :

  • Двухтрубные системы с медными или пластиковыми трубами .Трубы прикреплены к коллектору, каждый радиатор имеет отдельную подающую и обратную трубу. Этот тип системы в настоящее время является наиболее распространенным.
  • Двухтрубные системы с стальными трубами : каждый радиатор отдельно подключается к подающим и обратным трубам.

Клапаны Vasco идеально подходят для обоих типов двухтрубных систем.

Как установить радиаторы серии

Однотрубная система широко применялась в жилищном строительстве в семидесятые и восьмидесятые годы.При последовательном подключении возвратная вода одного радиатора служит питанием следующего. Следовательно, последний радиатор в системе передает меньше тепла, чем первый. Чтобы компенсировать потерю тепла, радиаторы должны увеличиваться в размерах по мере удаления от источника тепла. Другой вариант — установка перепускного клапана , который смешивает охлажденную возвратную воду с теплой водой перед ее подачей к следующему радиатору.

И последнее, но не менее важное: для последовательной установки радиаторов требуется труб подходящего размера ! Проконсультируйтесь со специалистом по отоплению или посетите наш центр загрузок, чтобы ознакомиться с технической информацией и инструкциями по установке.

Узнайте все о радиаторах горячей воды, последовательно и параллельно

Водяные радиаторы — полезные бытовые приборы, которые помогают обогревать комнаты и помещения в холодную погоду и работают лучше, чем большинство комнатных обогревателей. Эти устройства устанавливаются либо в последовательном режиме , либо в параллельном режиме , , , в зависимости от личных предпочтений. Что ж, если вы тот, кто планирует установить радиаторы для горячей воды дома или в офисе, то вам тоже придется решить это. Кроме того, вам нужно будет выбрать между однотрубной системой и двухтрубной системой. Эта статья поможет вам узнать о радиаторах для горячей воды как последовательно, так и параллельно.

ОСНОВНАЯ РАЗНИЦА

Эффективность любого радиатора является функцией разницы температур между двумя жидкостями, о которых идет речь. Если все остальные количества равны, то радиатор с большей разницей температур будет передавать больше тепла.

Теперь, если вы подключите радиаторы параллельно, каждый получит 1 / N потока, но у них будет одинаковый температурный градиент от входа к выходу.

Однако, если вы соедините их последовательно, весь поток пойдет на каждый из них, но каждый будет иметь только примерно 1 / N от общей разницы температур через него. В этом случае самый горячий из них будет иметь самый высокий дифференциал, поскольку он передает больше тепла другой жидкости.

Когда вы собираетесь установить систему центрального отопления, то вам нужно будет выбрать два варианта: однотрубные системы или двухтрубные системы.

Параллельно водяные радиаторы:

  • Двухтрубная система состоит из двух отдельных труб, одна из которых предназначена для подачи горячей воды в радиаторы, а другая — для подачи использованной воды обратно в котельную.Это означает, что радиаторы устанавливаются параллельно. Это факт, что двухтрубные системы дороже, чем однотрубные, но в то же время они более предпочтительны в современных зданиях.
  • Две параллельные системы труб или радиаторы горячей воды доступны в двух вариантах.
  • Один вариант состоит из медных или пластиковых труб, которые прикреплены к коллектору, причем каждый из радиаторов имеет отдельную подающую и обратную трубу. Это одна из самых распространенных систем, используемых в наши дни.Другой вариант — из стальных труб. При этом каждый из радиаторов отдельно подключается к подающим и обратным трубам.

Кредиты изображений: Wikimedia Commons

Радиаторы горячей воды в серии:

    Последовательные радиаторы
  • также известны как однотрубные системы .
  • Этот тип системы очень широко использовался в жилищном строительстве как в семидесятых, так и восьмидесятых годах, но некоторые люди устанавливают их даже сегодня.
  • В этом случае радиаторы включены последовательно, при этом возвратная вода одного радиатора служит питанием для следующего и так далее.Это означает, что последний радиатор в установке отдает меньше тепла по сравнению с первым.
  • Таким образом, чтобы компенсировать потерю тепла, радиаторы должны увеличиваться в размерах по мере удаления от источника тепла.
  • Для этого есть еще один вариант, а именно установка перепускного клапана, который смешивает охлажденную возвратную воду с теплой водой перед подачей в следующую.

Теперь, когда вы узнали все об установке радиаторов с горячей водой, у вас больше знаний, чтобы решать важные вопросы в процессе.Если вы хотите установить какую-либо из этих систем, вы можете связаться с профессионалами Mr Right по ремонту бытовой техники.

Рекомендации по загрузке …

Как добавить радиатор

Проблема с радиаторами в том, что их никогда не бывает достаточно, чтобы обойтись без них, и часто они оказываются не в том месте. Самый быстрый и простой способ обновить вашу систему центрального отопления — это установить радиатор, но зачем кому-то платить за это, если вы можете следовать нашему простому пошаговому руководству и сделать это самостоятельно за день?

В нашем пошаговом руководстве вы узнаете, как обновить систему отопления за день.

Установка радиатора — несложное, но трудоемкое дело, поэтому сантехник взимает с вас около 100 фунтов стерлингов за радиатор плюс материалы, чтобы установить один для вас. Если у вас твердые полы или вам нужно установить особенно длинные трубы, вы можете продолжать увеличивать эту цифру.

Мы составили это удобное руководство по установке радиатора в вашу систему центрального отопления. В руководстве описывается самый популярный вид влажного центрального отопления: система с открытой вентиляцией, в которой используются подающие и обратные трубы для распределения горячей воды от котла к радиаторам и обратно к котлу.

(БОЛЬШЕ: См. Другие уроки DIY)

Необходимые инструменты

  • Горелка для бутана
  • Резак для труб
  • Разводной гаечный ключ
  • Ключ радиаторного клапана
  • Ключ спускного клапана
  • Ручка для краски,
  • Рулетка
  • Сверла и сверла
  • Карандаш
  • Отвертки,
  • Огнестойкий мат
  • Пластиковый резак для шлангов / труб

Необходимые материалы

  • Предварительно припаянные 15-миллиметровые отводы, тройники и прямые соединители
  • или пластиковые быстроразъемные колена 15 мм тройники, прямые соединители
  • Медная труба 15 мм
  • или пластиковая труба 5 мм
  • Радиатор
  • Радиаторные клапаны
  • Флюс
  • Бутан
  • Запасные маслины 15 мм
  • ПТФЭ лента
  • Зажимы для труб
  • Винты
  • Заглушки

Тщательно продумайте, где вы собираетесь разместить новый радиатор. Одна часть комнаты особенно холодная? Будут ли сведены на нет его преимущества при переносе мебели в будущем? Также подумайте об общих потребностях в отоплении помещений: они измеряются в британских тепловых единицах (BTU), и на большинстве радиаторов есть наклейка, показывающая выходную мощность в BTU. Чтобы определить, сколько БТЕ требуется вашей комнате, умножьте высоту на ширину и длину комнаты (в футах), а затем умножьте это число на четыре.

Сколько дополнительных радиаторов может вместить ваш котел? При установке котла сантехник принимает во внимание размер дома и подбирает котел с соответствующей мощностью BTU.Обычно добавление одного или двух радиаторов не должно вызывать каких-либо проблем, но рекомендуется проверить мощность котла (в инструкции по эксплуатации или получить от производителя) и иметь представление о требованиях, предъявляемых к котлу со стороны существующих радиаторов.

Пошаговое руководство по добавлению радиатора

1. После того, как вы определились, где вы собираетесь разместить радиатор, найдите ближайшую пару подающей и обратной труб, к которой вы можете подключиться. Их можно разместить под половицами или, как здесь, прикрепить к стене из-за твердого пола.При холодной системе центрального отопления поверните термостат до щелчка, а затем коснитесь обеих труб. Первой нагревается труба, идущая от котла. Четко пометьте подающую и обратную трубы ручкой для рисования.

2. Выключите котел и убедитесь, что подача воды к агрегату тоже отключена. Присоедините кусок садового шланга к сливному крану на радиаторе и проведите шланг к точке снаружи, которая ниже радиатора. Отверните квадратный ключ под сливным краном и дайте системе стечь.

3. Выпуск воздуха из выпускных клапанов радиатора пропускает воздух в верхнюю часть радиатора и вытесняет воду, оставшуюся в системе. Не забудьте после этого поднять клапаны.

4. Найдите центральную точку стены и проведите в этой точке вертикальную карандашную линию. Найдите центральную линию радиатора и измерьте расстояние от этой точки до центра кронштейнов. Перенесите эти измерения на стену.

5. Некоторые радиаторы поставляются с шаблоном для разметки положений отверстий кронштейна.Поднесите это до уже начерченных линий и закрасьте карандашом. Если шаблона нет, вставьте кронштейн в заднюю часть радиатора и измерьте расстояние от основания кронштейна как минимум до 50 мм ниже нижней части радиатора (некоторые производители радиаторов рекомендуют зазор до 125 мм, проверьте упаковку для получения подробной информации). Начав с верхней части плинтуса, перенесите это измерение на стену. Если система слилась, теперь вы можете поднять сливной кран.

6. Поместите основание кронштейна на линию, проведенную на шаге 5, а затем отметьте верхнее отверстие кронштейна на стене.Просверлите стену и вставьте вилку в стену, свободно прикрепите кронштейны вверху, а затем разметьте и просверлите нижние отверстия.

7. Оберните тефлоновой лентой резьбовые части клапанов радиатора пять раз. Это помогает им запечатать.

8. Установите клапаны. Закрепите основной корпус клапана правильным шестигранным ключом, который можно купить в магазинах DIY. Используйте разводной гаечный ключ, чтобы затянуть внешнюю часть клапана на основном корпусе.

9. Подвесьте радиатор.

10. Вырежьте и изготовьте необходимые трубопроводы от радиатора обратно к подающей и обратной трубам, которые вы определили ранее. Если вы работаете с медными трубами, используйте подходящий труборез, а не ножовку. Отметьте место, где вы собираетесь закрепить кронштейны для поддержки участков трубопровода, и теперь прикрутите их на место.

11. Если вы используете медные трубы, перед началом пайки убедитесь, что все подходит друг к другу, и что при присоединении трубопроводов не возникает напряжений.

12. Очистите концы медных труб проволочной ватой.

13. Наденьте стопорные гайки и маслины на трубы, соединяющиеся с клапанами радиатора, и удерживайте их на месте, пока затягиваете.

14. Для этой части работы использовались предварительно припаянные или йоркширские стыки, которые просто нужно было равномерно нагреть бутановой горелкой, чтобы расплавить припой внутри стыка и сделать водонепроницаемое соединение. Используйте огнестойкий коврик позади нагреваемой области, чтобы предотвратить возгорание и возможность распайки существующих стыков.

15. Вы можете прекратить нагрев предварительно припаянного соединения, когда припой появится в кольце вокруг края соединения, как это. Не забывайте: оба конца предварительно запаянного шва должны нагреваться одновременно.

16. После того, как вы установили трубопровод от нового радиатора в области трубы, которую вы планируете подключать, вам нужно будет разрезать трубу и вставить тройник для подачи питания. В этом случае мы использовали быстроразъемную пластиковую тройку, чтобы продемонстрировать, как традиционные и современные компоненты сантехники могут работать вместе.

17. Пластиковую трубу следует разрезать подходящим ножом для шланга / труб, а не ножовкой, которая имеет тенденцию оставлять потертые края. Убедитесь, что разрез квадратный.

18. Перед тем, как подсоединить пластиковую трубу к соединителю, вставьте вставку в конец, чтобы предотвратить деформацию трубы.

19. Подсоедините подающую и обратную трубы к трубам от нового радиатора. Если вы установили термостатический клапан с одной стороны радиатора, и это не двухпоточный тип, то к этому клапану должна быть подключена подача потока.Заполните систему, открыв кран, который вы закрыли на шаге

20. Проверьте герметичность, а затем выпустите воздух из радиаторов.

Схема расположения трубопроводов для систем водяного отопления

В то время как много внимания уделяется эффективным котлам и инновационным радиаторам, конструкция системы трубопроводов часто является причиной или выходом из строя гидравлической системы отопления. Хорошая система трубопроводов может быть разницей между шумной, неудобной, энергоемкой системой и системой, которая обеспечивает комфорт во всех комнатах в доме.

Чтобы спроектировать эффективную систему, вы должны согласовать источник тепла с «излучателями тепла», то есть радиаторами и конвекторами. Некоторые типы излучателей тепла лучше всего подходят для источников тепла с относительно высокой температурой. Например, знакомые конвекторы с плинтусами из оребренных труб, которые используются во многих жилых и коммерческих зданиях, хорошо работают с температурой воды выше 150 ° F, но не с низкотемпературными системами, такими как тепловые насосы с грунтовым источником (см. Компоненты »).

После того, как вы выбрали бойлер и несколько излучателей тепла, вам понадобится система трубопроводов, разработанная для максимального использования этого отопительного оборудования с точки зрения комфорта и эффективности.В этой статье рассматриваются достоинства и недостатки четырех способов прокладки трубопроводов, которые подходят для использования с оборудованием, часто используемым в жилых и небольших коммерческих зданиях.

Последовательная цепь

В последовательном контуре простейшая гидравлическая система трубопроводов, радиаторы и котел находятся в одном общем контуре. Радиаторы около конца контура часто больше, чтобы компенсировать более низкую температуру воды.

В простейшей гидравлической системе распределения все излучатели тепла соединены в общий контур или «контур» с источником тепла.В этом устройстве температура воды постепенно понижается по мере перехода от одного излучателя тепла к другому. Это снижение температуры необходимо учитывать при выборе и размере излучателей тепла.

Распространенной ошибкой является определение размеров излучателей тепла на основе средней температуры воды в системе. В случае последовательного контура вы должны рассчитывать тепловые излучатели в зависимости от температуры воды в их конкретных местах в контуре трубопровода. Если вы этого не сделаете, вы услышите жалобы на перегретые помещения в начале контура трубопровода (ближайший к источнику тепла) и на неудобно прохладные в конце.

Основным преимуществом последовательных схем является простой и недорогой монтаж. Однако, поскольку вода протекает через все излучатели тепла, когда циркуляционный насос работает, вы не можете использовать клапан для регулирования тепловой мощности данного излучателя. Если бы вы это сделали, вы бы ограничили поток через всю систему. Другими словами, у последовательных цепей есть недостаток, заключающийся в том, что они не позволяют независимое управление отдельными излучателями тепла в соответствии с потребностями комфорта.

Как правило, последовательные цепи лучше всего подходят для высокотемпературных излучателей тепла, таких как плинтус из оребренных труб, в небольших зданиях, которые контролируются как одна зона.Их не следует использовать с излучателями тепла с высокими характеристиками падения давления, такими как теплые полы и некоторые конвекторы фанкойлов.

Однотрубные системы

Однотрубная система изолирует котел от основного контура трубы, когда котел не работает. Тройники и клапаны с термостатическим управлением отводят воду из основного контура, направляют ее через радиаторы, а затем возвращают в основную линию

«Однотрубная система» или «система Monoflo», как ее иногда называют, представляет собой распределительную систему, в которой используются специальные тройники для отвода части горячей воды по разветвлению трубопровода.Если ручной или автоматический регулирующий клапан установлен на пути ответвления трубопровода, поток воды через данный теплоизлучатель можно полностью контролировать. Это позволяет вам контролировать скорость вывода тепла от каждого излучателя тепла, не затрагивая всю систему. Таким образом, однотрубные системы обладают потенциалом для управления зонами от одной комнаты к другой, чего не предлагают последовательные схемы. В большинстве случаев обширное зонирование может быть выполнено с меньшими затратами с помощью однотрубной системы, чем с любым другим типом распределительной системы.

Поскольку тепловая мощность от каждого излучателя тепла может регулироваться независимо, однотрубные системы также позволяют увеличивать размеры отдельных излучателей тепла. Эта функция может быть хорошо применена в ванной комнате, где можно настроить слишком большой излучатель тепла для быстрого нагрева комнаты перед принятием душа или ванны, а затем сбросить настройки для поддержания нормальной комфортной температуры. Если бы вы сделали это с последовательной схемой, вы бы постоянно перегревали комнату.

Плинтус из оребренных труб, панельные радиаторы и конвекторы фанкойлов можно комбинировать и комбинировать по желанию, при этом все они подключаются как отдельные ответвления от главной распределительной цепи.Каждую единицу еще необходимо подобрать в соответствии с температурой воды, которую он получает из основного контура. Эта главная цепь обычно проходит по периметру здания и проходит под излучателями тепла, расположенными на внешних стенах. Такая компоновка экономит деньги за счет минимизации количества труб, используемых между основным контуром и излучателями тепла.

Наилучшим способом управления однотрубными системами является обеспечение постоянной циркуляции нагретой воды по главному контуру в течение отопительного сезона. Термостаты открываются и закрываются по мере необходимости для удовлетворения потребности в отоплении отдельных комнат. Поскольку используется постоянная циркуляция, лучше всего подключать котел к системе, как показано выше. Циркуляционный насос котла работает только при пожаре котла. В других случаях поток воды в основном контуре идет в обход котла, уменьшая потери тепла вне цикла.

Многозонные и многоконтурные системы

В многозонной системе для каждой зоны используется отдельный основной контур, обеспечивая воду в каждую зону примерно одинаковой температуры.Предпочтительный метод — использовать небольшой циркуляционный насос и обратный клапан на каждом контуре.

Другой метод зонирования гидронной системы использует отдельный трубопровод для каждой зонированной области. Есть два способа настроить это; использование отдельного циркуляционного насоса для каждой зоны или одного циркуляционного насоса большего размера и нескольких электрических зонных клапанов. Я предпочитаю первый метод по следующим причинам:

• Циркуляционные насосы с малой зоной потребляют меньше электроэнергии и работают только тогда, когда соответствующая зона требует тепла.Для сравнения: единственный более крупный циркуляционный насос в системе с зонным клапаном должен работать всякий раз, когда одна или несколько зон требуют тепла.

• Когда один более крупный циркуляционный насос работает только с одной активной зоной, скорость потока может быть достаточно высокой, чтобы создавать раздражающие шумы потока в трубах.

• При выходе из строя циркуляционного насоса нагрев прерывается только в одной зоне. Остальные зоны работают в обычном режиме. Отказ циркуляционного насоса в системе с зонным клапаном предотвратит доставку тепла ко всей системе.

Важно отметить, что подпружиненный обратный клапан должен быть установлен в каждой зоне мульти-циркуляционной системы. Если нет обратных клапанов, и только одна зона требует тепла, теплая вода будет течь обратно через контуры, которые должны быть отключены. Это ограничит тепловыделение активной цепи. Это также может привести к попаданию нежелательного тепла в излучатели тепла в теплую погоду, когда котел работает только для нагрева воды для бытового потребления.

У многозонных систем с отдельными контурами есть еще одно преимущество: каждая зона получает воду примерно одинаковой температуры.Это может позволить иметь несколько меньшие размеры излучателей тепла по сравнению с последовательной схемой. Если излучатели тепла имеют соответствующий размер, вы также можете эксплуатировать систему при немного более низкой температуре, что повысит ее общую эффективность.

Двухтрубные системы

Двухтрубная система подает воду к каждому радиатору по всей системе почти с одинаковой температурой. Все радиаторы подключаются между общей питающей магистралью и общей обратной магистралью. Двухтрубные системы чаще встречаются в коммерческих зданиях и хорошо подходят для конденсационных котлов.

Наиболее распространенный тип гидравлической распределительной системы в коммерческих зданиях известен как двухтрубная или параллельная система. В этой конструкции, которая также может использоваться в жилых системах, каждый излучатель тепла расположен в отдельной ответвленной цепи, которая подключается к общей питающей сети и общей обратной магистрали. Каждая ответвленная цепь проходит «параллельно» другим, позволяя каждому излучателю тепла получать воду примерно одинаковой температуры. Теоретически это позволяет использовать излучатели меньшего размера в каждой комнате.

Предпочтительный метод подключения ответвленных цепей к сети показан выше. Эта конструкция, называемая «системой обратного возврата», приводит к сбалансированному потоку через ответвленные цепи.

На этой диаграмме показаны типичные рабочие диапазоны различных источников водяного тепла, излучателей тепла и трубопроводных систем, хотя в необычных обстоятельствах иногда могут потребоваться конструкции, выходящие за пределы этих диапазонов.

Поскольку каждый излучатель тепла получает воду примерно одинаковой температуры, перепад температур между подачей и обраткой котла будет меньше, чем в системе последовательных трубопроводов. Например, в типичной параллельной системе перепад температуры между подающей и обратной линиями котла может составлять всего около 10 ° F. Напротив, типичная последовательная система может иметь падение температуры на 20 ° F или более. Меньший перепад температуры в двухтрубной системе помогает поддерживать температуру воды, возвращающейся в котел, выше точки росы выхлопных газов, что предотвращает конденсацию дымовых газов.

Двухтрубные системы — лучший выбор для использования с низкотемпературными источниками тепла, такими как тепловые насосы или конденсационные котлы.Системы теплого пола можно рассматривать как двухтрубные, поскольку каждый контур пола подключен параллельно с другими контурами на распределительных станциях. Двухтрубные системы также позволяют легко зонировать, используя клапаны для регулирования потока через любой данный излучатель тепла.

Основы двухтрубных паровых радиаторов

Основы двухтрубных паровых радиаторов

В двухтрубных паровых установках пар поступает от котла к радиаторам через впускной патрубок. После конденсации пар возвращается в котел через вторую выпускную трубу.Обычно вы можете распознать двухтрубную систему по двум трубам и отсутствию вентиляционного отверстия, прикрепленного к радиатору.

Ознакомьтесь с нашей коллекцией паровых радиаторов здесь.

Ознакомьтесь с введением в однотрубные паровые радиаторы здесь.

Компоненты двухтрубного парового радиатора

Пар поступает в радиатор через регулирующий клапан. Конденсатоотводчик позволяет воздуху и воде выходить, возвращаясь к котлу, но гарантирует, что пар остается внутри радиатора.Когда радиатор наполняется паром, воздух выходит из радиатора через открытый сифон. Когда радиатор наполняется паром, термостат внутри сифона расширяется и закрывает выпускное отверстие, задерживая пар внутри него. После конденсации пара ловушка снова открывается, позволяя воде вернуться в котел.

Воздух выходит из труб через одно или несколько главных вентиляционных отверстий рядом с котлом, а конденсат стекает обратно в котел, чтобы повторить процесс.

Конденсатоотводчик Hoffman

Регулирующий клапан на радиаторе может быть ручным или термостатическим.Термостатический клапан радиатора добавляет комфорта и контроля. Современная энергоэффективность TRV может дать значительную экономию на счетах за топливо.

Для паровых радиаторов с термостатическим управлением требуется вакуумный прерыватель, чтобы конденсат всегда мог возвращаться в котел. Наши поставляются в стандартной комплектации.

Какие радиаторы использовать с двухтрубным паром?

Чугун — действительно проверенный временем материал для парового отопления.Пар создает большую нагрузку на систему: большие перепады температуры заставляют металл расширяться и сжиматься при каждом цикле нагрева; кислотные или щелочные условия в зависимости от химического состава воды; и, если система плохо спроектирована или не обслуживается, сильные удары от парового молота. Чугун также образует пассивное покрытие ржавчины, защищающее большую часть материала от дальнейшего окисления. Все это идет вразрез с использованием стальных тонкостенных радиаторов со сварными стыками, они просто недолговечны.

Мы предлагаем только чугунные радиаторы для паровых систем, а не стальные. Просмотрите нашу полную подборку здесь. Что касается соединений клапана на паре, мы рекомендуем только резьбовые механические соединения со стальными или латунными трубами. Хотя компрессионные фитинги идеально подходят для гидравлических систем, мы предпочитаем проверенную временем надежность резьбового соединения.

Ознакомьтесь с нашей коллекцией паровых радиаторов здесь.

См. Также наши руководства по однотрубным паровым и водяным радиаторам.

Дополнительная литература

Дэн Холоэн: Возвращение к утраченному искусству парового отопления
Дэн Холоэн: Озеленение пара

Все, что вам нужно знать о балансировке радиаторов

Некоторые системы отопления могут быть настоящим кошмаром для балансировки, независимо от того, сколько вы с этим боретесь, вы просто не можете запустить все сразу!

Обычно это происходит в более крупных системах, и многие скажут, что это означает, что вам, вероятно, необходимо гидравлическое разделение. Тем не менее, у нас есть несколько советов, которые мы усвоили по ходу дела, которые сэкономят ТОННУ времени на балансировку в конце работы. Сделать те системы, которые невозможно сбалансировать, очень просто !!

Так что же такое балансировка системы отопления?

Для балансировки системы отопления необходимо просто убедиться, что все радиаторы или излучатели нагреваются равномерно. Для систем, использующих погодную компенсацию или компенсацию нагрузки, это гарантирует, что у вас в каждой комнате объекта будет точная температура, а не в некоторых комнатах слишком жарко, а в некоторых слишком холодно.Слишком большой поток к радиаторам приведет к перегреву помещения, меньший поток — к нагреву помещения.

В более старых системах включения / выключения это было бы больше связано со временем нагрева и, возможно, меньшей проблемой при условии, что у вас есть TRV и ваша эталонная комната (комната с термостатом) немного сбалансирована. Эта статья, как и все статьи Heat Geek, на самом деле не о системах включения / выключения, а больше о современных модулирующих системах отопления, которые должны быть стандартом.

Балансировка НЕ ​​увеличивает конденсацию на котле вопреки распространенному мнению.Правильный перепад температуры в системе достигается за счет управления скоростью насоса. Если у вас нет насоса на высокой настройке и вы не ограничиваете все свои клапаны, чтобы замедлить обратный поток, однако это было бы экспоненциально расточительно с энергией насоса. Главное — не задушить насос и не тратить энергию впустую. У вас всегда должен быть хотя бы один полностью открытый клапан.

Однако неправильная балансировка или ее отсутствие снижает мощность системы в целом, это будет выглядеть как меньшая дельта Т для котлов, работающих только на отопление, где насосы не связаны с горелкой.Подробнее в нашей статье повышает ли балансировка КПД котла?

Почему балансировать некоторые системы отопления ТАК БОЛЬНО?

Есть несколько основных причин, по которым балансирование становится трудным, и понимание того, почему является вашим первым шагом. Вот краткий обзор со ссылками на дополнительную информацию.

Первая и основная причина заключается в том, что в системе имеется большой перепад давления. Это может быть связано с использованием трубопроводов меньшего диаметра или с тем, что система просто большая / имеет большие протяженности.Чтобы понять больше, взгляните на «взаимосвязь давления и потока».

Есть два способа обойти эту проблему;

Мы можем использовать один из многих доступных нам методов компоновки трубопроводов, чтобы минимизировать перепады давления. Более подробная информация об этом приведена в конце статьи, и мы можем использовать более совершенные балансировочные клапаны!

Мы не можем переоценить это обстоятельство, поскольку неправильный выбор запорных клапанов может вызвать у вас полную головную боль, и большинство из них не подозревают, что есть разница! Что вы не знаете о статье о замках.

Другие причины могут быть связаны с используемым методом балансировки.

Например, некоторые инженеры пытаются добиться идеального перепада температур (или DT) 20 ° C на каждом радиаторе. На наш взгляд, это не нужно и сложно.

Еще одна проблема — некоторые инженеры при балансировке (режим трубочиста) выставляют котел на полную мощность. Это заставит котел попытаться ввести максимальную мощность котла в систему, которая, скорее всего, будет иметь мощность радиатора только часть размера котла.Это всегда будет приводить к крошечной дельте t, поскольку система не может переносить тепло. Это, в свою очередь, также не будет иметь точной скорости потока, когда котел вернется в нормальный режим работы, и означает, что вы будете балансировать для сценария, который никогда не произойдет.

Наконец, хотя в большинстве случаев они могут быть достаточно хорошими, они могут использовать совершенно неправильные клапаны! Обратите внимание, прежде чем мы сказали, что клапаны лучше, однако некоторые запорные клапаны вообще не предназначены для балансировки !! Снова подробнее здесь . .. или может быть лучший вариант, описанный ниже …

как бы мы посоветовали сбалансировать систему отопления?

Перво-наперво, чтобы получить правильную скорость потока вокруг каждого излучателя / радиатора, вам необходимо получить правильную скорость потока вокруг всей системы.Для этого нам необходимо отрегулировать производительность насоса в соответствии с системой.

Слишком низкая скорость потока будет означать, что объекту может быть сложно достичь нужной температуры, так как средняя (средняя) температура радиаторов слишком низкая. Если насос работает слишком быстро, это приведет к экспоненциальной потере мощности, а также уменьшит эффект конденсации в котле за счет повышения температуры обратной магистрали. У инженеров может возникнуть соблазн задушить насос, перекрыв клапаны, чтобы снизить скорость потока, это опять же приводит к потере еще большей мощности.

К счастью, почти все современные модулирующие котлы имеют управление насосом, связанным с горелкой. Это непрерывно регулирует скорость насоса, чтобы обеспечить правильный расход относительно подводимого тепла. Быстро проверьте свой источник тепла, чтобы убедиться, что он имеет приблизительную правильную DT / скорость потока, для получения дополнительной информации по уточнению и настройке скорости вашего насоса щелкните здесь. Не волнуйтесь, если ваше DT выходит из строя на 10-20%, это действительно не имеет большого значения на данном этапе, и установщики могут тратить время зря и зацикливаться на достижении этого.

Подробнее об этом читайте в нашей статье «Ложь DT20». Однако более точным ориентиром является DT, который составляет около 30% от температуры подачи.

Например; Если у нас температура подачи 70 ° C (70 x 0,3) дает DT 21 ° C. Если ваша температура подачи составляет 50 ° C, это даст DT 15 ° C (50 X 0,3) и так далее. Это не совсем точно, это просто для того, чтобы получить правильную скорость потока. Вы можете использовать более сложные суммы, но мы не будем терять время зря.

В любом случае, теперь ваш расход в правильном направлении, пора наконец сбалансировать радиаторы.

Как сбалансировать радиаторы

Здесь мы можем использовать несколько разных методов, важно, что ни один из них не является правильным или неправильным в пределах разумного. Просто некоторые методы займут больше времени, чем другие, а некоторые позволят достичь более точной комнатной температуры! Также предположим, что мы балансируем модулирующий котел без гидравлического разделения.

Два основных способа балансировки радиаторов (если они вообще используются) инженеры-теплотехники — это либо «измерить среднюю температуру радиатора», либо отрегулировать запорный экран до тех пор, пока они не почувствуют одинаковую среднюю температуру.На другом конце спектра они используют датчики температуры на каждом конце радиатора (подающей и обратной) и балансируют для определенного перепада температуры.

Подсоединение термометра к патрубкам подачи и возврата радиаторов и регулировка запорных клапанов для обеспечения одинакового перепада температуры обеспечивает правильность расхода по отношению к конкретному размеру или мощности радиатора.

Однако, если у вас есть некоторый перепад температуры вдоль подающей трубы перед радиатором, это даст вам другую «среднюю температуру» на каждом радиаторе.Средняя температура представляет собой среднее значение температуры подачи и возврата. Чтобы решить эту проблему, добавьте температуру потока к температуре возврата и разделите на 2.

Мы не видим большой проблемы с незначительно отличающимися средними температурами, но это будет означать, что вы потратили довольно много времени на что-то, что в любом случае не так точно, поскольку реальная мощность радиаторов будет отличаться.

При использовании модулирующих элементов управления мы снова не видим особых проблем с использованием сенсорного экрана, а не термометра, при условии, что температура в комнате достигает точной температуры с любым TRV, установленным на максимум.Т.е. температура подачи нацелена на комнатную температуру, а не на TRV, так как это потенциально может привести к перегреву котла.

Как описано выше, вместо этого вы могли бы сбалансировать, чтобы обеспечить одинаковую «среднюю» температуру на каждом радиаторе. Для этого определите среднюю температуру в источнике тепла (примерно) и отрегулируйте каждый запорный клапан, пока у вас не будет одинаковой средней температуры на каждом радиаторе.

По сути, это приведет к разному падению DT / температуры на всех радиаторах, но средняя температура радиатора будет такой же.Это сработает, но опять же может занять много времени и будет неприятно, если ваш котел будет работать нормально. Важно отметить, что это может не дать вам идеального баланса, ведь наша цель — это точная комнатная температура, а не точная температура радиатора.

Расчеты теплопотерь неточны, и даже если бы они были, они могли быть выброшены из-за множества вещей, таких как отсутствие изоляции, ошибки в расчетах, использование комнат или неправильный выбор радиатора. Лично мы думаем, что оба вышеперечисленных варианта — занятие неблагодарное.

Балансировка температуры обратной воды

Вместо этого мы предлагаем сделать так, чтобы после установки максимального значения TRV вы просто ощущали (или измеряли, если хотите) температуру обратной линии радиатора, пока система находится на «расчетной температуре подачи» (требуется температура подачи при -2 ° c приблизительная температура наружного воздуха) и убедитесь, что в комнатах не выше 20/21 ° C. По крайней мере, для начала.

В подавляющем большинстве систем температура подачи к каждому радиатору в целом будет одинаковой, нет смысла вообще их измерять.Прикосновение к радиатору для определения средней температуры также оставляет небольшую погрешность. Однако измерение температуры обратного потока имеет, безусловно, наибольшую погрешность.

Для уточнения, предполагая, что котел с DT 20 ish, возврат радиатора с наружной температурой 8 ° C будет иметь среднюю температуру на выходе всего 4 ° C.

Рисунок 1

В то время как, если бы мы чувствовали среднюю температуру радиатора и делали ту же ошибку в 8 ° C, у нас было бы совершенно разных DT и, в свою очередь, сильно различались бы скорости потока через каждый излучатель.

Например.

Рис 2

Поскольку измерение температуры обратного трубопровода является более важной переменной, многие системы могут быть достаточно близкими, просто нащупав обратный трубопровод рукой. Хотя для большей точности вы можете использовать термометр определенного описания или их комбинацию, это первая точка, в которой вы значительно увеличите скорость и точность балансировки.

Точность не обязательно должна быть идеальной прямо сейчас, постарайтесь добиться того, чтобы все температуры обратной воды приблизительно совпадали.

В более крупных системах вы можете обнаружить, что вам пришлось настолько ограничить ближайшие радиаторы, что вам нужно было увеличить скорость насоса. Это связано с тем, что перепад давления на подаче и обратной линии намного больше в более крупных системах, чтобы получить достаточно высокий расход. Подробнее об этом в понимании давления и расхода.

Вернитесь к насосу и измерьте DT на источнике тепла и приблизительно отрегулируйте производительность насоса, если необходимо, но это маловероятно для большинства систем.

Опять же, вам не нужно точно согласовывать температуру обратки. Размер радиатора никогда не будет точным, поскольку радиатор будет увеличен или уменьшен до размера ближайшего радиатора, а также — комнаты разделяют тепло.

Так вот, это не должно было занять много времени. Теперь вы можете либо попросить пассажира следить за температурой в помещении, и, если она немного высока, вы можете немного позже уравновесить или показать их. Если в комнате немного низкая температура, увеличьте расход (уменьшите DT), чтобы увеличить мощность радиатора, хотя, по нашему опыту, это маловероятно.

Мы понимаем, что в большинстве систем все еще используется управление включением / выключением вместо модулирующего управления, такого как погодная компенсация или компенсация помещения. Для этого мы бы посоветовали ориентировочно установить температуру обратки, уравновесить эталонную комнату (комнату с термостатом) до чуть более широкого DT, а затем позволить TRV делать свое дело. В качестве альтернативы используйте автоматические балансировочные клапаны, предлагаемые IMI, Honeywell или Danfoss.

, однако, если вы приверженец точности, вы можете перейти на следующий уровень…

Закройте все внутренние и внешние двери, окна и шторы (для предотвращения попадания солнечного света) в собственность и установите плавное регулирование для достижения максимальной температуры, при которой вам комфортно работать.

Затем вам нужно будет измерить температуру в каждой комнате индивидуально и отрегулировать запорный экран, чтобы в каждой комнате была одинаковая температура. Пойдите в каждую комнату и настройте каждый запорный щиток, если необходимо, приоткройте запорный клапан очень немного, если в комнате прохладнее, чем ваша целевая температура, и закройте его, если в комнате слишком жарко.

Это гораздо более эффективное использование вашего времени, чем установка одного и того же DT для каждого радиатора, поскольку мы нацелены на комнатную температуру , а не на температуру радиатора.

При этом помните о других переменных, таких как усиление солнечной энергии. Также обратите внимание, что чем шире разница между внутренним и внешним пространством, тем более точным будет этот метод. Этого можно достичь, либо дождавшись более холодного дня, либо увеличив регулирующий термостат на более высокое значение, либо и то и другое. Эта последняя регулировка, скорее всего, просто покажет вам, насколько проста ваша система и что собственность разделяет большую часть ее тепла.

После того, как балансировка завершена и вы довольны своей кривой нагрева (при необходимости), вы можете вернуть свой TRV, чтобы ограничить внутренний выигрыш.

Быстрая подсказка . Если вы балансируете полотенцесушители (клапаны полотенцесушителей открываются очень быстро), закройте обе стороны, а не одну. Закрыв одну сторону, а не другую, вы увеличите вращение клапана для меньшего изменения потока, что фактически означает улучшение характеристики открытия.

Как уже упоминалось, это предложение по балансировке предполагает, что вы балансируете только современный модулирующий котел. Он будет работать и для всех других типов систем, но есть и другие варианты, если ваш модулирующий котел не контролирует скорость потока в вашей системе.

Перед чтением следующего раздела было бы полезно понять давление и расход!

Какой насос вы пытаетесь сбалансировать?

Если у вас старый котел, в вашей системе нет модулирующего управления или гидравлического разделения, доступны и другие методы балансировки. ИЛИ вам может даже не понадобиться использовать запорные клапаны для балансировки!

В коммерческом мире, например, необходимо знать, как вы собираетесь управлять каждым контуром.Затем вы выберете тип управления насосом в сочетании с типом клапана, который дополняет его, чтобы эффективно распределить поток.

В насосах

используются различные методы управления потоком и экономии энергии. Вы можете подключить горелку, управлять DT, регулировать перепад давления, регулировать внешний датчик, постоянное давление, постоянную скорость, пропорциональное давление и т. Д. (Статья по этому поводу).

Но обычно их можно разделить на 2 группы: насосы, которые изменяют скорость до заданного давления, и насосы, которые изменяют давление для достижения заданной скорости.Затем вы должны выбрать конкретный тип клапана, который будет дополнять его.

Проблема современных отечественных модулирующих котлов в том, что они изменяют как давление, так и расход. Это может быть очень сложно управлять, и поэтому единственный оставшийся вариант — уравновесить скромный замок, которого более чем достаточно в быту, мы могли бы добавить. Однако не все замки для балансировки одинаковы! Чего вы не знали о запорных клапанах!

Система Grunfos Alpha2

Система Grundfos Alpha2 будет работать с любой из этих логических схем насоса или с любым клапаном.Однако вы должны использовать их помпу Alpha 3.

После заполнения системы и очистки от воздуха вы подключаете внешний модуль Bluetooth к телефону и помпе. Затем ваш телефон проинструктирует вас, насколько нужно отрегулировать запорный экран или какие предустановленные TRV, ограничивающие поток, следует отрегулировать. По окончании этого будет создан отчет, показывающий, что вы выполнили баланс, что может быть полезно для предстоящего принятия закона о балансировании.

Автоматические балансировочные клапаны

Для насосов, которые устанавливают фиксированное давление и изменяют поток, я бы рекомендовал TRV с ограничением потока или автоматическую балансировку TRV.

Автоматические балансировочные клапаны, также известные как независимое от давления управление (PIC), обычно представляют собой коммерческие клапаны со встроенным ограничителем потока, и это просто их версии TRV. Они включают в себя переключатель расхода под головкой TRV и пронумерованы, скажем, от 1 до 5. Каждое число соответствует расходу, который будет в инструкциях производителя, просто выберите требуемый расход и отрегулируйте! ЗДОРОВО!

Мы настоятельно рекомендуем осторожно настраивать насос с их помощью.Если насос рассчитывает, что установленный перепад давления на клапане ниже 1 метра напора, они не смогут полностью контролировать работу других радиаторов. Тем не менее, эти клапаны обычно имеют ограничительные пути небольшого диаметра (и повышенный авторитет клапана), поэтому это маловероятно. Однако обратите внимание: если вы запустите насос при более высоком перепаде давления, чем требуется минимально, потребление энергии вашим насосом возрастет.

Например, если вы можете получить достаточный поток к радиаторам с напором 3 метра, но насос остается на высоте 6 м, вы удвоите вашего энергопотребления. Вы должны обязательно поэкспериментировать с понижением скорости насоса, пока поток не начнет ухудшаться. Если вы удвоите свое сопротивление, вы удвоите потребление энергии, это прямая линейная зависимость. Подробнее ..

Если ваша помпа нацелена на скорость, вам нужно быть еще более осторожным. Если установленная скорость даже немного превышает ваш общий предел потока через все клапаны вместе взятые, то клапаны будут оказывать экспоненциально большее сопротивление насосу, и насос будет увеличиваться до максимального перепада давления для компенсации.Это потребует максимальной мощности для данного расхода. По этой причине мы всегда советуем оставлять один байпасный радиатор для прохождения любого избыточного потока при использовании этих клапанов.

Мы не предлагаем эти клапаны для использования с современным модулирующим котлом, который изменяет и давление, и поток по причинам, описанным выше, или с насосом, управляемым DT. Вот небольшое объяснение.