Как сбросить воздух из батареи: принцип работы, выбор и установка

Содержание

Как спустить воздух из батареи отопления

В воде в небольших количествах растворён кислород.

Однако со временем он может привести к большим трудностям в отопительной системе.

И если у Вас в квартире (или доме) стоит хоть один радиатор, Вы обязательно должны знать, как спустить воздух из батареи отопления. И можно обойтись без вызова мастера!

Что такое завоздушенность батареи?

Завоздушенность, или воздушная пробка – это скопление воздуха в верхней части отопительного прибора (или трубопровода).

В многоквартирных домах особенно сильно от проблемы страдают обитатели последних этажей.

Причин завоздушенности может быть несколько. Перечислим основные:

  • Ремонтные работы (если с трубопроводом производились манипуляции, это приводит к попаданию внутрь системы воздуха).
  • В городских квартирах сложно пустить в работу магистраль без пробок, поскольку в идеале, система должна заполняться водой очень медленно, с одновременным стравливанием.
  • Где-то утечка (даже небольшая течь на стыке должна быть сразу устранена).
  • Сложности часто возникают с системой тёплых полов, если её ветки проложены не строго горизонтально и на разной высоте.
  • В любой воде, при повышении температуры, выделяется кислород. В частных домах со временем весь воздух выходит, и если теплоноситель не меняется, о проблеме можно забыть. Но в центральном отоплении порции жидкости обновляются постоянно.

Если совсем уж нет возможности сделать всё своими руками, можно оставить заявку в обслуживающей дом компании, чтобы прислали мастера.

Но врабатывание системы обычно занимает две недели, поэтому до этого срока не стоит торопиться с жалобами.

Как ее определить?

Обнаружить пробку легко, она сама даст о себе знать:
  • Батареи могут начать булькать;
  • Температура в комнатах понизится без видимых причин;
  • Часть радиатора будет прогреваться, в то время как другая его область останется почти холодной.

Слегка постучите металлическим предметом по верху радиатора, а затем сравните звук от стука внизу прибора. Там, где появилась пробка, звук будет более звонкий, высокий.

К чему может привести завоздушенность отопления?

Явление парализует работу системы – нарушается циркуляция, что приводит к перегреванию отдельных участков отопительной системы и недостаточному прогреву других.

Из-за длительного контакта с кислородом многие металлы покрываются окалиной, подвергаются разрушению. Особенно чувствительны к пуску отопительной системы алюминиевые радиаторы.

В частных домах с принудительной циркуляцией, воздух контактирует с циркуляционным насосом. Сокращается срок службы прибора.

Как правильно спустить воздух из батареи

В гравитационной системе частного дома, все пузырьки сами выходят через расширительный бак, расположенный в самой верхней точке.

В городских квартирах на каждом радиаторе устанавливается воздухоотводчик:

  1. Ручной (кран Маевского).
  2. Автоматический клапан.

В зависимости от того, что установлено, будет меняться технология работы.

Алюминиевой, биметаллической или чугунной

Алюминий – не самый подходящий для отопления материал. Он активно вступает в химические реакции и выделяет водород. Но благодаря своей скромной цене и хорошей теплопроводности, он часто применяется. Для борьбы с недостатками алюминия, его покрывают изнутри слоем специальной плёнки. Но со временем она перестаёт действовать, и водород начинает неизбежно выделяться.

Биметаллические радиаторы – ещё одно изобретение, улучшающее качество отопительных приборов. Там, где происходит контакт с теплоносителем, здесь использован другой металл. А оребрение выполнено из алюминия.

Если на батарее установлен термостат, его нужно просто периодически открывать и дожидаться пока выйдет воздух. Процесс стравливания воздуха из биметаллических батарей не отличается от работ с алюминиевым радиатором.

Батареи уже давно должны были стать горячими, но этого не происходит? Нет отопления: куда звонить и как составить жалобу, читайте далее.

Как выбрать одноконтурный газовый котел для отопления частного дома, читайте тут. Рассмотрим основные критерии выбора.

При частых отключениях горячей воды жители таких неблагоприятных районов стараются обзаводиться водонагревателями. В этой теме https://microklimat.pro/otopitelnoe-oborudovanie/vodonagrevateli/kak-polzovatsya.html расскажем, как правильно пользоваться водонагревателем бытового назначения.

Кран Маевского

Это небольшой удобный воздухоотводчик, размещенный в боковой части батареи.

Если на алюминиевом, биметаллическом или чугунном радиаторе стоит кран Маевского, нужно подготовить отвёртку или пассатижи, а также ёмкость для воды.

При помощи отвёртки откручивается кран. Если пробка действительно была, начнёт выходить воздух и можно будет услышать характерное шипение.

Под кран предварительно нужно подставить ёмкость для воды – дело в том, что немного погодя воздух начнёт выходить вместе с каплями воды, но закрывать кран Маевского ещё рано.

Полностью спущенным, воздух считается тогда, когда из отверстия польётся стабильная струйка воды.

Сколько времени займёт процедура, будет зависеть от того, какие объёмы газа скопились в системе. С одной батареи обычно воздух выходит в течение 5 – 7 минут. Чтобы обезвоздушить всю систему иногда требуется полчаса и больше.

При большом давлении, жидкость может брызгать в разные стороны. Защитить ремонт и мебель поможет простая тряпочка, повешенная на радиатор так, чтобы по ней вода стекала в ведро.

Без крана Маевского

На старообразных чугунных батареях раньше устанавливалась обычная заглушка.

Её нужно было открутить (что само по себе порой сложно), предварительно, перекрыв доступ теплоносителя к радиатору.

Если у Вас именно такой случай, подойти к работе нужно будет основательно. Запаситесь тряпками, тазиком или ведром.

А для того, чтобы открутить пробку понадобится разводной ключ. Проблема в том, что такие заглушки закручивались на пакле с краской, да и бывают хорошо залиты во время окрашивания батарей. Растворить краску поможет немного керосина. Его нужно нанести на место стыка заглушки с радиатором и подождать 15-20 минут. Даже после этого может понадобиться приложить немалое усилие, чтобы сдвинуть пробку по резьбе.

Умельцы прошлых лет упрощали себе задачу, устанавливая на такие заглушки обычный кран. Вид они, конечно, портили, но стравливать воздух становилось легче.

После процедуры заглушка обматывается лентой ФУМ и вставляется на прежнее место.

Если не рассчитать усилия и вывернуть заглушку полностью, горячая вода хлынет потоком! Вот почему важно перекрывать стояк – если этого не сделать, вставить заглушку обратно практически не реально.

Автоматический воздухоотводчик

Чтобы не обременять себя процедурами стравливания воздуха, можно установить автоматический клапан.

Они оснащены поплавком, который плотно закрывает отверстие сброса до тех пор, пока в системе есть вода.

Когда же просачивается газ, поплавок опускается и открывает отверстие – воздух выходит.

У этих устройств есть слабость – им желательно бы работать с очень чистой водой, которой не бывает в централизованных системах отопления. Поэтому автоматический механизм нужно ставить вместе с фильтрами. Но и это не гарантирует полной безопасности воздухоотводчика. Может понадобиться, периодически чистить его или заменять.

Если через несколько лет исправной работы, автоматический клапан начал «подкапывать», дело либо в уплотнительном кольце (нужно поменять прокладку или намотать на резьбу ленту ФУМ), либо игла механизма обросла солями (потребуется снять крышку и почистить иглу).

Маленькие мелочи и нюансы

  • Иногда, чтобы воздух вышел полностью, батарею нужно немного тряхнуть.
  • В частных домах некоторые мастера делают следующее: устанавливают в нижней части отопления обычный кран, который можно подключить к водопроводу. Если нужно стравить воздух, кран открывается, пускается вода – она одновременно промывает трубы, и выталкивает воздух через расширитель.
  • Если в проектировке отопления были нарушения – неправильные уклоны, или труба делает петлю, во всех проблемных местах нужно поставить дополнительное средство спуска воздуха.

Заключение

В центральных сетях воздух попадает в систему очень и очень часто. Поэтому, снабдив все радиаторы в доме кранами Маевского или автоматическими воздухоотводчиками, можно сэкономить время и упростить задачу спуска воздуха.

В своём доме, где есть возможность контролировать качество теплоносителя, тем более можно поставить автоматику и вообще забыть о проблеме.

Сбои в работе системы отопления ведут к многочисленным неудобствам. Не все знают, что такой простой прибор как байпас в системе отопления может помочь стабилизировать работу отопительной системы.

Как собрать простейший индукционный нагреватель своими руками, расскажем в этой статье.

Видео на тему

Способы и советы как стравить воздух из батареи

Перед началом отопительного сезона нередко возникает проблема завоздушенности системы. Это приводит к частичному или полному блокированию контуров отопления для протечки теплоносителя по ним. Вследствие чего батареи не нагреваются. Также эта проблема часто встречается в многоквартирных домах, построенных по старым проектам. В них, как правило, не установлены и не предусмотрены вообще автоматические воздухоотводчики. И тогда возникает вопрос: «Как спустить воздух из батареи в многоквартирном доме?» Обычно при включении центральной системы отопления работники ЖКХ самостоятельно обходят все квартиры в таких домах и спускают воздух. Но если этого не происходит, то, наверное, про Вас забыли. И тогда необходимо дело брать в свои руки. Звонить в ЖКХ или собственноручно спустить воздух.

Воздух в квартире

Итак, как выпустить воздух из батареи в квартире? Если в вашей квартире холодно, хотя соседи снизу не знают, куда деться от жары. То скорее всего у Вас присутствует воздух в батареях отопления. Чтобы его спустить, необходимо открыть специально предназначенный для этого клапан. Он обычно находится вверху над коном в домах с радиаторами, встроенными в стены. Чтобы его открыть понадобится специальный ключ, который можно изготовить самостоятельно. В новых же домах радиаторы находятся внутри квартиры и на них имеются так называемые краны Маевского. Он представляет собой гайку с болтом по средине. Болт имеет конусовидную форму и закрывает отверстие для выхода воздуха.

Необходимо помнить о том, что в многоквартирных домах давление очень высокое, поэтому сильно выкручивать штуцер нельзя. Все действия выполняются медленно и максимально осторожно.                  

Воздух в частном доме

 

Расширительный бачок

В частном доме все намного проще, потому что система отопления автономная. При необходимости всегда можно ее на время выключить. Тем более, что для эффективного удаления воздуха в системе это как раз рекомендуется делать. Воздушная пробка в батарее отопления в частном доме может возникнуть по двум причинам:

  1. Некачественное удаление воздуха после последнего ремонта. После проведения всех видов ремонтов с отопительной системой необходимо с каждого радиатора производить его спуск. Но если пробка находилась достаточно далеко от клапана, то возможно просто не дождались ее выхода.
  2. Химические процессы в радиаторах, а завоздушенность – это газовые образования. При некачественном литье радиатора со множеством раковин не только теряется прочность радиатора, но и снижается эффективность его теплообмена.

Почему не греют батареи видео, поможет разобраться в этом вопросе.

Способы удаления воздуха

В зависимости от типа отопительной системы можно выделить и несколько способов избавления от воздуха в батареях:

Кран Маевского

При осуществлении спуска воздуха из батарей в системе с принудительной циркуляцией бойлер или котел рекомендуется отключить. Потому что при открытии клапана из-за достаточно высокого давления (0,8-1,5 атмосферы) воздуха в нее может попасть еще больше, и он может оказаться и в других радиаторах.          

Чтобы стравить воздух из батареи необходимо открыть клапан, как правило, устанавливается клапан Маевского, а под его отвод подставить небольшую емкость. Туда в процессе спуска воздуха будет вытекать и вода. Сегодня имеются клапана разного типа и даже универсальные. Чтобы их открыть необходимо иметь при себе обычную плоскую отвертку или специальный 4-х гранный ключ. Он свободно продается, а также имеется в комплекте для радиаторов. Рекомендуется сливать не менее 200 г воды, это позволит выйти всему воздуху, который мог попасть в радиатор. После проведения профилактики в системе давление упадет и его необходимо поднять до нужного уровня. При использовании котлов марки Ariston требуется давление от 1,5 до 2 атмосфер. Его же достаточно для отопления коттеджа.

Как развоздушить батареи без крана в доме или квартире

Как развоздушить батареи отопления без крана

Разделы статьи:

Наверняка многим знакома такая ситуация, когда батареи греют лишь наполовину или только сверху, из-за чего комната прогревается недостаточно. Так вот, всё дело в скопившемся воздухе внутри батарей, который и не даёт проходить теплу вниз или дальше.

Для того чтобы разобраться с этой неприятностью и заставить работать батареи отопления на полную мощность, нужно лишь развоздушить их. Однако перед тем как развоздушить батареи, потребуется узнать, в каком месте это лучше сделать и через что именно сбросить воздух — через кран Маевского или накидные гайки.

Как узнать — завоздушена ли система отопления?

Перед тем как стравить воздух из системы отопления стоит убедиться в том, что он в действительности там имеется. Для этого достаточно на ощупь попробовать каждую батарею со стороны обратки, и если та совсем холодная, то, скорее всего дело именно в воздухе.

Также, симптомами скопившегося воздуха в батарее отопления, будет её холодная нижняя часть или одна половина. При этом верх батареи, как правило, горячий, а низ полностью или частично холодный.

Кроме того, наличие воздуха в батареях и трубах отопления, будет сопровождаться зловещим бульканьем, которое только подтвердит обильное его количество в теплоносителе. Ну и, пожалуй, последним фактом, который даст понять, завоздушена ли система отопления, является резкое падение температуры в доме без какой-либо существенной причины на это.

Как развоздушить батареи

Сбросить воздух с батарей отопления, в особенности нового образца, достаточно просто, для этих целей в их конструкции предусмотрена установка крана Маевского. Такой краник должен стоять на каждой батарее вверху, с левой или правой её стороны.

Пройдясь к каждой завоздушенной батарее отопления, достаточно будет немного повернуть ключом и стравить с неё полностью воздух. Стравливать воздух нужно до тех пор, пока с батареи не пойдёт вода. Таким образом, развоздушивается система отопления закрытого типа.

Немного по-другому обстоят дела со сбросом воздуха в советских батареях отопления, на которых раньше не ставилось вообще никаких кранов. В таком случае, необходимо подобраться к накидной гайке или к другому резьбовому соединению, расположенному вблизи отопительного прибора.

Открутив гайку ключом, следует дождаться пока уйдёт весь воздух и не пойдёт вода.

Если же батареи завоздушены в квартире, а крана для сброса воздуха на них не стоит, то, как вариант, будет сбросить воздух с верхней точки. Для этого нужно будет подняться к соседу этажом выше и стравить воздух с батарей у него, ну или придётся лезть на чердак дома и развоздушивать всю систему отопления уже оттуда.

Ну а про том, как удалить воздух из системы теплого пола, вы можете прочесть, перейдя по выделенной ссылке в другую статью сайта Ремстрой Совет.

Обязана ли я спускать воздух и воду с батарей при включении отопления?

В соответствии со ст. 30 ЖК РФ собственник жилого помещения осуществляет права владения, пользования и распоряжения принадлежащим ему на праве собственности жилым помещением в соответствии с его назначением и пределами его использования, которые установлены настоящим Кодексом. Собственник жилого помещения вправе предоставить во владение и (или) в пользование принадлежащее ему на праве собственности жилое помещение гражданину на основании договора найма, договора безвозмездного пользования или на ином законном основании, а также юридическому лицу на основании договора аренды или на ином законном основании с учетом требований, установленных гражданским законодательством, настоящим Кодексом. Собственник жилого помещения несет бремя содержания данного помещения и, если данное помещение является квартирой, общего имущества собственников помещений в соответствующем многоквартирном доме, а собственник комнаты в коммунальной квартире несет также бремя содержания общего имущества собственников комнат в такой квартире, если иное не предусмотрено федеральным законом или договором. Собственник жилого помещения обязан поддерживать данное помещение в надлежащем состоянии, не допуская бесхозяйственного обращения с ним, соблюдать права и законные интересы соседей, правила пользования жилыми помещениями, а также правила содержания общего имущества собственников помещений в многоквартирном доме.

Согласно п. 5 Правил содержания общего имущества в многоквартирном доме, утвержденных Постановлением Правительства РФ от 13.08.2006 N 491, в состав общего имущества включаются внутридомовые инженерные системы холодного и горячего водоснабжения и газоснабжения, состоящие из стояков, ответвлений от стояков до первого отключающего устройства, расположенного на ответвлениях от стояков, указанных отключающих устройств, коллективных (общедомовых) приборов учета холодной и горячей воды, первых запорно-регулировочных кранов на отводах внутриквартирной разводки от стояков, а также механического, электрического, санитарно-технического и иного оборудования, расположенного на этих сетях.

Поэтому если батареи именно у вас в квартире могут каким то образом навредить соседям, то есть это не батареи общей сети либо не батареи в подъезде, то в данном случае сливать или не сливать дело Абсолютно ваше, но в случае если вдруг что то случится у соседей то вся вина ляжет на вас если вы не докажете что проблема с батареями это есть поломка внутри ОБЩЕЙ сети батарей в доме, за которые отвечает УК.

Воздух в системе отопления: причины появления, клапаны

Нормально работающее отопление зимой — жизненная необходимость. Без подогрева в нашем климате не выжить. Но периодически ранее нормально работающая система начинает сбоить — не греются или плохо греются радиаторы, появляется посторонний шум (бульканье). Все это признаки того, что появился воздух в системе отопления. Ситуация далеко не редкая, но приносящая дискомфорт. 

Содержание статьи

Чем грозит воздух в системе отопления

Все, наверное, не раз встречались с тем, что отопление включено, а какой-то радиатор или целая группа нагреваются плохо или вообще стоят холодные. Причина этому — воздух в системе отопления. Он обычно скапливается в самой высокой точке, вытесняя из этого места теплоноситель. Если его скапливается достаточно много, циркуляция теплоносителя вообще может остановиться. Тогда говорят о том, что в системе отопления образовалась воздушная пробка. Профессионалы в таком случае говорят, что система завоздушилась.

Чтобы возобновить нормальную работу отопления необходимо скопившийся воздух удалить. Для этого есть два варианта. Первый чаще используется в системах централизованного отопления. На крайних радиаторах в ветке устанавливают краны. Они называются спускными. Это обычный вентильный кран. После заполнения системы теплоносителем его открывают, держат открытым до тех пор, пока не пойдет ровная струйка воды без воздушных пузырей (тогда вода льется рывками). Если говорить о многоэтажных домах, то во время запуска системы сначала должны открываться воздухосбросники на стояках, а остатки уже можно выводить по квартирам.

Воздух в радиаторе отопления мешает нормальной циркуляции теплоносителя. Это приводит к тому, что батарея плохо греется

В частных системах или после замены радиаторов в квартирах, для стравливания воздуха ставят не обычные краны,  а специальные воздушные клапаны. Они бывают ручными и автоматическими. Ставятся они в верхний свободный коллектор на каждый радиатор (желательно) и/или в самой высокой точке системы.

Чем еще грозит воздух в системе отопления? Он способствует более быстрому разрушению компонентов системы отопления. Хоть сегодня все больше используются полимеры, металлических частей все еще достаточно. Наличие кислорода способствует активизации окисления (черный металл ржавеет).

Причины появления

Воздух в системе отопления может появиться по разным причинам. Если это проблема разовая — можно просто удалить его и не заниматься поисками источника. Если развоздушивание требуется несколько раз за сезон, придется искать причину. Вот наиболее распространенные:

  • Ремонт, модернизация системы отопления. При ремонтных работах воздух в трубопровод попадает практически всегда. Это естественно.
  • Заполнение системы теплоносителем. Если заливать воду в систему медленно, воздуха она с собой несет немного, попутно вытесняя тот, который имеется в трубах и радиаторах. Это тоже процесс понятный, особых мер тоже не требует.
  • Разгерметизация стыков и сварных швов. Этот дефект требует устранения, так как завоздушивание будет происходить постоянно. В индивидуальных системах отопления данное явление (негерметичные соединения) сопровождается также падением давления. И это — еще одна причина искать неисправности. Наиболее вероятное место — соединения труб и радиаторов. Они могут быть негерметичны. Искать их очень сложно, так как внешне они далеко не всегда проявляются. Если вы заметили, что какое-то из соединения «подкапываеет» все намного проще — устраняете капель. Но если внешне все нормально, а воздух все время скапливается, приходится обмазывать стыки и швы мыльной пеной и наблюдать — появятся ли новые пузыри. После нахождения каждого «подозрительного» соединения их подтягивают, обмазывают герметиком или перепаковывают (способ зависит от типа соединений).

    Скапливаться воздух может в изгибах труб

  • Если в системе отопления уже стоят воздухоотводчики (клапана для сброса воздуха) и в ней начали появляться пробки, надо проверить исправность клапанов, а также герметичность соединений.
  • Появление воздуха в системе отопления может быть связано с разрывом мембраны расширительного бака. В этом случае придется менять мембрану, а для этого надо останавливать всю систему.

Это наиболее распространенные места и способы, какими воздух попадает в радиаторы и батареи. Выгонять его оттуда надо время от времени, но при осеннем пуске отопления  — обязательно.

Устанавливаем клапана для сброса воздуха

Для отвода воздуха из отопления на радиаторах ставят воздухоотводчики — ручные и автоматические воздушные клапана. Их называют по-разному: спускник, воздухосбросник, спускной или воздушный клапан, воздушник и т.п. Суть от этого не меняется.

Воздушный клапан Маевского

Это небольшое устройство для стравливания воздуха из радиаторов отопления вручную.  Устанавливается оно в верхний свободный коллектор радиатора. Есть разных диаметров под разное сечение коллектора.

Ручной воздухоотводчик — кран Маевского

Представляет собой металлический диск со сквозным отверстием конической формы. Это отверстие закрывается винтом конусообразной формы. Выкручивая винт на несколько оборотов, предоставляем возможность воздуху выйти из радиатора.

Устройство для отвода воздуха из радиаторов

Для облегчения выхода воздуха перпендикулярно к основному каналу сделано дополнительное отверстие. Через него собственно, воздух и выходит. Во время развоздушивания при помощи крана Маевского, направьте это отверстие вверх. После этого можно винт откручивать. Откручивайте на несколько оборотов, сильно не выкручивайте. После того, как прекратиться шипение, винт возвращаете в исходное положение, переходите к следующему радиатору.

При пуске системы может потребоваться обход всех воздухосборников по нескольку раз — пока воздух вообще перестанет выходить. После этого радиаторы должны греться равномерно.

Автоматический клапан сброса воздуха

Эти небольшие устройства ставятся как на радиаторы, так и в других точках системы. Отличаются они тем, что позволяют стравливать воздух в системе отопления в автоматическом режиме. Чтобы понять принцип работы рассмотрим строение одного из автоматических воздушных клапанов.

Принцип работы автоматического спускника такой:

  • В нормальном состоянии теплоноситель заполняет камеру процентов на 70. Поплавок находится вверху, поджимает шток.
  • При попадании в камеру воздуха, теплоноситель вытесняется из корпуса, поплавок опускается.
  • Он давит выступом-флажком на жиклер, отжимая его.

    Принцип работы автоматического клапана для спуска воздуха

  • Отжатый жиклер открывает небольшую щель, которой достаточно для выхода воздуха, который скопился в верхней части камеры.
  • По мере выхода воды корпус воздухоотводчика заполняется водой.
  • Поплавок поднимается, освобождая шток. Он за счет пружины возвращается на место.

По этому принципу работают разные конструкции автоматических воздушных клапанов. Они могут быть прямыми, угловыми. Ставятся в наивысших точках системы, присутствуют в группе безопасности. Могут быть установлены в выявленных проблемных местах — где трубопровод имеет неправильный уклон, из-за чего там скапливается воздух.

Вместо ручных кранов Маевского можно поставить автоматический спускник для радиаторов. По размерам он лишь чуть больше, но работает в автоматическом режиме.

Автоматический воздушный клапан для отвода воздуха

Чистка от солей

Основная беда автоматических клапанов для сброса воздуха из системы отопления — отверстие для отвода воздуха часто зарастает кристаллами соли. В этом случае или воздух не выходит или клапан начинает «плакать». В любом случае требуется его снять и прочистить.

Автоматический воздухоотоводчик в разобранном виде

Чтобы это можно было делать без остановки отопления, ставят автоматические воздушные клапана в паре с обратными. Первым монтируют обратный клапан, на него — воздушный. При необходимости автоматический воздухосборник для системы отопления просто откручивают, разбирают (откручивают крышку), чистят и собирают снова. После этого устройство снова готово стравливать воздух из системы отопления.

Как избавиться от воздушной пробки

К сожалению, не всегда воздушная пробка находится в легко доступном месте. При ошибках проектирования или укладки, воздух может скапливаться в трубах. Стравливать его оттуда очень нелегко. Сначала определяем местоположение пробки. В месте пробки трубы холодные и слышно журчание. Если явных признаков нет, проверяют трубы по звуку — постукивают по трубам. В месте скопления воздуха звук будет более звонким и громким.

Найденную воздушную пробку надо выгнать. Если речь идет о системе отопления частного дома, для этого поднимают температуру и/или давление. Начнем с давления. Открывают ближайший спускной клапан (по ходу движения теплоносителя) и подпиточный кран. В систему начинает поступать вода, поднимая давление. Оно вынуждает пробку двигаться вперед. Когда воздух попадает к спускнику, он выходит. Прекращают подпитку после того как весь воздух выйдет —  спускной клапан перестанет шипеть.

Это группа безопасности. На среднем выходе установлен автоматический воздухоотводчик

Не все воздушные пробки так легко сдаются. Для особой упорных надо одновременно поднимать температуру и давление. Эти параметры доводятся до значений, близких к максимальным. Превышать их нельзя — слишком опасно. Если в после этого пробка не ушла, можно попытаться открыть одновременно спускной кран (для слива системы) и подпиточный. Может, таким образом удастся сдвинуть воздушную пробку или вообще избавиться от нее.

Если подобная проблема возникает постоянно в одном месте — налицо ошибка в проектировании или разводке. Чтобы не мучится каждый отопительный сезон, в проблемном месте устанавливают клапан для отвода воздуха. В магистраль можно врезать тройник и на свободный вход установить воздухоотводчик. В таком случае проблема будет решаться просто.

Методы разряда батареи — Battery University

Узнайте, как определенные разрядные нагрузки сокращают срок службы батареи.

Назначение батареи — накапливать энергию и высвобождать ее в желаемое время. В этом разделе исследуется разряд при различных скоростях C и оценивается глубина разрядки, на которую батарея может безопасно перейти. В документе также наблюдаются различные сигнатуры разряда и исследуется срок службы батареи при различных схемах загрузки.

Электрохимическая батарея имеет преимущество перед другими устройствами накопления энергии в том, что энергия остается высокой на протяжении большей части заряда, а затем быстро падает по мере истощения заряда. Суперконденсатор имеет линейный разряд, а сжатый воздух и накопитель с маховиком — это противоположность батареи, поскольку вначале она обеспечивает максимальную мощность. На рисунках 1, 2 и 3 показаны смоделированные разрядные характеристики накопленной энергии.

Большинство перезаряжаемых аккумуляторов могут быть кратковременно перезаряжены, но этого следует избегать. Срок службы батареи напрямую зависит от уровня и продолжительности нагрузки, которая включает заряд, разряд и температуру.

Любители дистанционного управления (ПДУ) — это особая категория пользователей батарей, которые максимально увеличивают терпимость к «хрупким» высокопроизводительным батареям, разряжая их со скоростью 30 ° C, что в 30 раз превышает номинальную емкость. Столь же захватывающим может быть вертолет с дистанционным управлением, гоночный автомобиль или скоростной катер; срок службы пакетов будет коротким. Баффы RC хорошо осведомлены о компромиссе и готовы как заплатить цену, так и столкнуться с дополнительными рисками безопасности.

Чтобы получить максимальную энергию на единицу веса, производители дронов обращаются к элементам с высокой емкостью и выбирают Energy Cell.В этом отличие от отраслей, требующих больших нагрузок и длительного срока службы. Эти приложения относятся к более надежным элементам Power Cell с меньшей емкостью.

Глубина разряда

Свинцово-кислотные разряды до 1,75 В / элемент; система на никелевой основе до 1,0 В / элемент; и большинство литий-ионных до 3,0 В / элемент. На этом уровне расходуется примерно 95 процентов энергии, и если бы разряд продолжался, напряжение быстро упало бы. Чтобы защитить аккумулятор от чрезмерной разрядки, большинство устройств предотвращают работу сверх указанного напряжения в конце разряда.

При снятии нагрузки после разряда напряжение исправного аккумулятора постепенно восстанавливается и повышается до номинального напряжения. Различия в сродстве металлов в электродах создают этот потенциал напряжения, даже когда батарея разряжена. Паразитная нагрузка или высокий саморазряд препятствуют восстановлению напряжения.

Высокий ток нагрузки, как в случае сверления бетона с помощью электроинструмента, снижает напряжение батареи, и порог напряжения конца разряда часто устанавливается ниже, чтобы предотвратить преждевременное отключение.Напряжение отключения также следует снижать при разрядке при очень низких температурах, поскольку напряжение аккумулятора падает, а внутреннее сопротивление аккумулятора увеличивается. В таблице 4 показаны типичные значения напряжения в конце разряда для батарей различного химического состава.

Конец разгрузки

Номинал

Пошаговое руководство по безопасному и простому ремонту батарей

Важная информация

Метод восстановления батарей EZ от Тома Эриксона — это проверенный и проверенный метод восстановления ЛЮБОГО ТИПА БАТАРЕИ в свой собственный дом.

Он содержит визуальные и текстовые инструкции о том, как восстановить старые батареи всего за 3 часа. Вы также узнаете, как получить эти старые батареи по низкой цене, чтобы восстановить их, а затем продать с хорошей прибылью.

EZ Battery Recondition также содержит рекомендации и рекомендации по продлению срока службы литий-ионных, свинцово-кислотных аккумуляторов и аккумуляторов смартфонов. Используя этот метод, вы не только сэкономите хорошую сумму денег, но и продадите восстановленные батареи, чтобы заработать дополнительные деньги.

5 шагов по восстановлению батарей дома

Во многих портативных электронных устройствах используются аккумуляторные батареи. Однако проблема в том, что через некоторое время эти аккумуляторные батареи теряют заряд и в конечном итоге перестают заряжаться. К счастью, вы можете что-то с этим поделать.

Этот веб-сайт содержит много информации о батареях, таких как различные типы батарей, шаги, чтобы продлить их срок службы, как проверить одну из них, можно ли ее восстановить, как восстановить батареи и, наконец, раздел о свинцово-кислотных батареях (12 В автомобильный аккумулятор).

Вы можете использовать информацию, полученную с этого веб-сайта, чтобы позаботиться о своих батареях, помочь своему другу или подзаработать в качестве подработки.

Но прежде чем я начну, я хотел бы поделиться некоторыми важными советами по мерам предосторожности:

Меры предосторожности:

  • Избегайте ношения украшений при работе с аккумулятором
  • Используйте пару защитных очков и пару высоковольтных перчаток, когда используя любую процедуру восстановления, описанную на этом веб-сайте.
  • Всегда подключайте положительный вывод инструмента к положительной клемме аккумулятора, а отрицательный провод устройства — к отрицательной клемме аккумулятора.Изменение этих подключений может повредить ваше устройство.
  • Всегда используйте защитные очки, защитные перчатки и фартук при работе со свинцово-кислотными аккумуляторами, поскольку они содержат серную кислоту.
  • Всегда ремонтируйте свинцово-кислотные аккумуляторы в хорошо вентилируемом помещении.
  • Отрицательную клемму аккумулятора нельзя подключать.

Зарядка аккумулятора мотоцикла. и разрядка информационного справочника

Меню Поиск
  • Дом
  • Новости
  • Свяжитесь с нами

Поиск: Поиск

  1. Продукты
    • Автомобильная промышленность
    • Коммерческие автомобили
    • Промышленное применение
      • ИБП
      • Телекоммуникации
      • Возобновляемая энергия
      • Пожарная безопасность и безопасность
      • Гольф и мобильность
      • Аварийное освещение
      • Накопитель энергии
      • Уборка полов и доступ с воздуха
    • Мотоцикл и силовой спорт
    • Отдых, море и сад
    • Зарядные устройства, тестеры и аксессуары
    Автомобильная промышленность

    Диапазоны

    • Обзор
    • YBX9000 AGM
    • YBX7000 EFB
    • YBX5000
    • YBX3000
    • YBX1000
    • Вспомогательное оборудование, резервное копирование и специалист
    • классический
    • Посмотреть все батареи

    Информация

    • Все, что вам нужно знать об аккумуляторах
    • Как работает аккумулятор
    • Общие сведения о спецификациях
    • Серебряные кальциевые батареи
    • Характеристики аккумулятора и диагностика неисправностей
    • Тестирование батарей
    • Здоровье и безопасность
    • Видео

    Новые технологии

    • Разъяснения по поводу AGM и EFB
    • Микро-гибридные и гибридные автомобили
    • Вспомогательные и резервные батареи
    • Инструмент настройки Yu-Fit
    • Предупреждение о замене батареи

    Загрузки

    • Руководства по применению
    • Брошюры, краткие формы и руководства модельного ряда
    • Уход за батареями и тестирование
    • Паспорта безопасности
    • Схема перекрестных ссылок

    Контроль качества

    • Гарантия на автомобили и мотоциклы
    • Промышленная гарантия
    • Аккредитация
    • OE Родословная
    • Заявление о BER
    • Политика возврата отработанной батареи
    • Служба утилизации и вывоза аккумуляторных батарей
    Коммерческие автомобили

    Диапазоны

    • Обзор
    • YBX 1000 SHD
    • YBX 3000 SHD
    • YBX 5000 SHD
    • YBX 7000 EFB
    • Pro Spec — глубокий цикл
    • классический
    • Смотреть все

    Информация

    • Все, что вам нужно знать об аккумуляторах
    • Как работает аккумулятор
    • Общие сведения о спецификациях
    • Серебряные кальциевые батареи
    • Характеристики аккумулятора и диагностика неисправностей
    • Тестирование батарей
    • Здоровье и безопасность
    • Видео

    Новые технологии

    • Разъяснения по поводу AGM и EFB
    • Микро-гибридные и гибридные автомобили
    • Предупреждение о замене батареи

    Загрузки

    • Руководства по применению
    • Брошюры, краткие формы и руководства модельного ряда
    • Уход за батареями и тестирование
    • Паспорта безопасности
    • Схема перекрестных ссылок

    Гарантия качества

    • Гарантия для автомобилей и мотоциклов
    • Промышленная гарантия
    • Аккредитация
    • OE Родословная
    • Заявление о BER
    • Политика возврата отработанной батареи
    • Служба утилизации и вывоза аккумуляторных батарей
    Промышленное применение

    Диапазоны

    • Обзор
    • НП VRLA
    • НПЛ VRLA
    • НПХ ВРЛА
    • НПВ VRLA
    • NPC VRLA
    • RE VRLA
    • REW VRLA
    • REC VRLA
    • SW — VRLA
    • SWL VRLA
    • EN VRLA
    • ЭНЛ VRLA
    • ENL VRLA Передний терминал
    • FXH VRLA
    • Pro Spec Глубокий цикл
    • SLR VRLA Глубокий цикл
    • LIM литий-ионный
    • Ю-Лайт
    • Смотреть все

    Информация

    • Golf & Mobility Аккумуляторная батарея
    • Режим ожидания и циклические определения
    • Руководство по установке, вводу в эксплуатацию и техническому обслуживанию
    • Циклический VRLA Производительность и срок службы
    • Видео
    • Калькулятор промышленных размеров

    Загрузки

    • Руководства по применению
    • Брошюры, краткие формы и руководства модельного ряда
    • Уход за батареями и тестирование
    • Паспорта безопасности
    • Схема перекрестных ссылок

    Гарантия качества

    • Гарантия для автомобилей и мотоциклов
    • Промышленная гарантия
    • Аккредитация
    • OE Родословная
    • Заявление о BER
    • Политика возврата отработанной батареи
    • Служба утилизации и вывоза аккумуляторных батарей
    ИБП

    Диапазоны

    • НП VRLA
    • НПЛ VRLA
    • НПХ ВРЛА
    • НПВ VRLA
    • RE VRLA
    • REW VRLA
    • SW — VRLA
    • SWL VRLA
    • EN VRLA
    • ЭНЛ VRLA
    • ENL VRLA Передний терминал
    • LIM литий-ионный

    Информация

    • Golf & Mobility Аккумуляторная батарея
    • Резервные и циклические определения
    • Руководство по установке, вводу в эксплуатацию и техническому обслуживанию
    • Видео

    Загрузки

    • Руководства по применению
    • Брошюры, краткие формы и руководства модельного ряда
    • Уход за батареями и тестирование
    • Паспорта безопасности
    • Схема перекрестных ссылок

    Гарантия качества

    • Гарантия для автомобилей и мотоциклов
    • Промышленная гарантия
    • Аккредитация
    • OE Родословная
    • Заявление о BER
    • Политика возврата отработанной батареи
    • Служба утилизации и вывоза аккумуляторных батарей
    Телекоммуникации

    Диапазоны

    • НП VRLA
    • НПЛ VRLA
    • RE VRLA
    • REW VRLA
    • SW — VRLA
    • SWL VRLA
    • EN VRLA
    • ЭНЛ VRLA
    • ENL VRLA Передний терминал
    • FXH VRLA
    • LIM литий-ионный

    Информация

    • Golf & Mobility Аккумуляторная батарея
    • Резервные и циклические определения
    • Руководство по установке, вводу в эксплуатацию и техническому обслуживанию
    • Видео

    Загрузки

    • Руководства по применению
    • Брошюры, краткие формы и руководства модельного ряда
    • Уход за батареями и тестирование
    • Паспорта безопасности
    • Схема перекрестных ссылок

    Гарантия качества

    • Гарантия на автомобили и мотоциклы
    • Промышленная гарантия
    • Аккредитация
    • OE Родословная
    • Заявление о BER
    • Политика возврата отработанной батареи
    • Служба утилизации и вывоза аккумуляторных батарей
    Возобновляемая энергия

    Диапазоны

    • НПЛ VRLA
    • NPC VRLA
    • REC VRLA
    • ЭНЛ VRLA
    • ENL VRLA Передний терминал
    • FXH VRLA
    • SLR VRLA Глубокий цикл
    • LIM литий-ионный

    Информация

    • Golf & Mobility Аккумуляторная батарея
    • Резервные и циклические определения
    • Руководство по установке, вводу в эксплуатацию и техническому обслуживанию
    • Видео

    Загрузки

    • Руководства по применению
    • Брошюры, краткие формы и руководства модельного ряда
    • Уход за батареями и тестирование
    • Паспорта безопасности
    • Схема перекрестных ссылок

    Контроль качества

    • Гарантия для автомобилей и мотоциклов
    • Промышленная гарантия
    • Аккредитация
    • OE Родословная
    • Заявление о BER
    • Политика возврата отработанной батареи
    • Служба утилизации и вывоза аккумуляторных батарей
    Пожарная безопасность

    Диапазоны

    • НП VRLA
    • НПЛ VRLA
    • RE VRLA

    Информация

    • Golf & Mobility Аккумуляторная батарея
    • Режим ожидания и циклические определения
    • Руководство по установке, вводу в эксплуатацию и техническому обслуживанию
    • Видео

    Загрузки

    • Руководства по применению
    • Брошюры, краткие формы и руководства модельного ряда
    • Уход за батареями и тестирование
    • Паспорта безопасности
    • Схема перекрестных ссылок

    Контроль качества

    • Гарантия для автомобилей и мотоциклов
    • Промышленная гарантия

Зарядные устройства и методы зарядки

Схемы зарядки

Зарядное устройство имеет три основные функции

  • Зарядка в АКБ (Зарядка)
  • Оптимизация скорости зарядки (стабилизация)
  • Знание, когда остановиться (Завершение)

Схема тарификации представляет собой комбинацию методов тарификации и завершения.

Прекращение начисления

Когда аккумулятор полностью заряжен, зарядный ток должен каким-то образом рассеиваться. В результате выделяется тепло и газы, которые вредны для батарей. Суть хорошей зарядки состоит в том, чтобы иметь возможность определять, когда восстановление активных химикатов завершено, и останавливать процесс зарядки до того, как будет нанесен какой-либо ущерб, при постоянном поддержании температуры элемента в безопасных пределах.Обнаружение этой точки отключения и прекращение заряда имеет решающее значение для продления срока службы батареи. В простейших зарядных устройствах это происходит при достижении заранее определенного верхнего предела напряжения, часто называемого напряжением завершения . Это особенно важно для устройств быстрой зарядки, где опасность перезарядки выше.

Безопасная зарядка

Если по какой-либо причине существует риск чрезмерной зарядки аккумулятора из-за ошибок в определении точки отключения или неправильного обращения, это обычно сопровождается повышением температуры. Условия внутренней неисправности в батарее или высокие температуры окружающей среды также могут привести к выходу батареи за пределы ее безопасных рабочих температур. Повышенные температуры ускоряют выход батарей из строя, а мониторинг температуры элементов — хороший способ обнаружить признаки неисправности по разным причинам. Сигнал температуры или сбрасываемый предохранитель можно использовать для выключения или отсоединения зарядного устройства при появлении знаков опасности, чтобы избежать повреждения аккумулятора. Эта простая дополнительная мера предосторожности особенно важна для аккумуляторов большой мощности, где последствия отказа могут быть как серьезными, так и дорогостоящими.

Время зарядки

Во время быстрой зарядки можно перекачивать электрическую энергию в аккумулятор быстрее, чем химический процесс может на нее отреагировать, что приведет к разрушительным результатам.

Химическое воздействие не может происходить мгновенно, и будет происходить градиент реакции в объеме электролита между электродами с электролитом, ближайшим к преобразуемым или «заряжаемым» электродам, до того, как электролит находится дальше.Это особенно заметно в элементах большой емкости, которые содержат большой объем электролита.

Фактически, в химических превращениях клетки участвуют по крайней мере три ключевых процесса.

  • Один из них — «перенос заряда», который представляет собой фактическую химическую реакцию, происходящую на границе раздела электрода с электролитом, и она протекает относительно быстро.
  • Второй — это процесс «массопереноса» или «диффузии», в котором материалы, трансформированные в процессе переноса заряда, перемещаются с поверхности электрода, давая возможность другим материалам достичь электрода и принять участие в процессе трансформации.Это относительно медленный процесс, который продолжается до тех пор, пока все материалы не будут преобразованы.
  • Процесс зарядки может также подвергаться другим значительным эффектам, время реакции которых также следует принимать во внимание, например, «процессу интеркаляции», в ходе которого литиевые элементы заряжаются, когда ионы лития вставляются в кристаллическую решетку основного электрода. См. Также Литиевое покрытие из-за чрезмерной скорости зарядки или зарядки при низких температурах.

Все эти процессы также зависят от температуры.

Кроме того, могут быть другие паразитические или побочные эффекты, такие как пассивация электродов, образование кристаллов и скопление газа, которые влияют на время зарядки и эффективность, но они могут быть относительно незначительными или нечастыми, или могут возникать только в условиях неправильного обращения. . Поэтому они здесь не рассматриваются.

Таким образом, процесс зарядки аккумулятора имеет по меньшей мере три характерные постоянные времени, связанные с достижением полного преобразования активных химикатов, которые зависят как от используемых химикатов, так и от конструкции элемента.Постоянная времени, связанная с переносом заряда, может составлять одну минуту или меньше, тогда как постоянная времени массопереноса может достигать нескольких часов или более в большой ячейке с большой емкостью. Это одна из причин, почему элементы могут передавать или принимать очень высокие импульсные токи, но гораздо более низкие постоянные токи (еще один важный фактор — это рассеиваемое тепло). Эти явления нелинейны и относятся как к процессу разрядки, так и к зарядке. Таким образом, существует предел скорости приема заряда элемента.Продолжая закачивать энергию в элемент быстрее, чем химические вещества могут реагировать на заряд, может вызвать локальные условия перезаряда, включая поляризацию, перегрев, а также нежелательные химические реакции вблизи электродов, что приведет к повреждению элемента. Быстрая зарядка увеличивает скорость химической реакции в элементе (как и быстрая разрядка), и может потребоваться «периоды покоя» во время процесса зарядки, чтобы химические воздействия распространялись через основную массу химической массы в элементе и для стабилизации на прогрессивном уровне заряда.

Узнайте больше о периодах отдыха и о том, как их можно использовать для увеличения срока службы батареи и повышения точности измерений SOC на странице «Программно конфигурируемая батарея».

См. Также влияние химических изменений и скорости зарядки в разделе Срок службы батареи.

Запоминающееся, хотя и не совсем эквивалентное явление — налив пива в стакан.Очень быстрое наливание приводит к образованию большого количества пены и небольшого количества пива на дне стакана. Медленное наливание по стенке стакана или, как вариант, дать пиву отстояться до тех пор, пока пена не рассеется, а затем доливание позволяет полностью заполнить стакан.

Гистерезис

Постоянные времени и упомянутые выше явления вызывают гистерезис в батарее.Во время зарядки химическая реакция отстает от приложения зарядного напряжения, и аналогично, когда к аккумулятору прикладывается нагрузка для его разрядки, происходит задержка до того, как полный ток может пройти через нагрузку. Как и в случае с магнитным гистерезисом, энергия теряется во время цикла заряда-разряда из-за эффекта химического гистерезиса.

На приведенной ниже диаграмме показан эффект гистерезиса в литиевой батарее.

Допущение коротких периодов стабилизации или отдыха во время процессов заряда-разряда для учета времени химической реакции будет иметь тенденцию к уменьшению, но не устранению разницы напряжений из-за гистерезиса.

Истинное напряжение батареи в любом состоянии заряда (SOC), когда батарея находится в состоянии покоя или в спокойном состоянии, будет где-то между кривыми заряда и разряда.Во время зарядки измеренное напряжение элемента в течение периода покоя будет медленно перемещаться вниз к состоянию покоя, поскольку химическое преобразование в элементе стабилизируется. Точно так же во время разряда измеренное напряжение элемента во время периода покоя будет перемещаться вверх в направлении состояния покоя.

Быстрая зарядка также вызывает повышенный джоулев нагрев элемента из-за задействованных более высоких токов, а более высокая температура, в свою очередь, вызывает увеличение скорости процессов химического преобразования.

В разделе «Скорость разряда» показано, как скорость разряда влияет на эффективную емкость элемента.

В разделе «Конструкция ячеек» описывается, как можно оптимизировать конструкции ячеек для быстрой зарядки.

Эффективность заряда

Это относится к свойствам самого аккумулятора и не зависит от зарядного устройства.Это соотношение (выраженное в процентах) между энергией, удаленной из аккумулятора во время разряда, по сравнению с энергией, использованной во время зарядки для восстановления исходной емкости. Также называется Coulombic Efficiency или Charge Acceptance .

Прием заряда и время заряда в значительной степени зависят от температуры, как указано выше. Более низкая температура увеличивает время зарядки и снижает прием заряда.

Обратите внимание на , что при низких температурах аккумулятор не обязательно получит полный заряд, даже если напряжение на клеммах может указывать на полную зарядку. См. Факторы, влияющие на состояние заряда.

Основные методы зарядки

  • Постоянное напряжение Зарядное устройство постоянного напряжения — это в основном источник питания постоянного тока, который в своей простейшей форме может состоять из понижающего трансформатора от сети с выпрямителем, обеспечивающим постоянное напряжение для зарядки аккумулятора.Такие простые конструкции часто встречаются в дешевых зарядных устройствах для автомобильных аккумуляторов. В свинцово-кислотных элементах, используемых для автомобилей и систем резервного питания, обычно используются зарядные устройства постоянного напряжения. Кроме того, в литий-ионных элементах часто используются системы постоянного напряжения, хотя они обычно более сложные с добавленной схемой для защиты как батарей, так и безопасности пользователя.
  • Постоянный ток Зарядные устройства постоянного тока изменяют напряжение, подаваемое на батарею, чтобы поддерживать постоянный ток, и отключаются, когда напряжение достигает уровня полной зарядки.Эта конструкция обычно используется для никель-кадмиевых и никель-металлогидридных элементов или батарей.
  • Конусный ток Это зарядка от грубого нерегулируемого источника постоянного напряжения. Это не контролируемый заряд, как в V Taper выше. Ток уменьшается по мере нарастания напряжения элемента (противо-ЭДС). Существует серьезная опасность повредить элементы из-за перезарядки. Чтобы избежать этого, следует ограничить скорость и продолжительность зарядки.Подходит только для батарей SLA.
  • Импульсный заряд Импульсные зарядные устройства подают зарядный ток в аккумулятор импульсами. Скорость зарядки (на основе среднего тока) можно точно контролировать, изменяя ширину импульсов, обычно около одной секунды. Во время процесса зарядки короткие периоды покоя от 20 до 30 миллисекунд между импульсами позволяют стабилизировать химическое воздействие в батарее за счет выравнивания реакции по всему объему электрода перед возобновлением заряда.Это позволяет химической реакции идти в ногу со скоростью поступления электрической энергии. Также утверждается, что этот метод может уменьшить нежелательные химические реакции на поверхности электрода, такие как газообразование, рост кристаллов и пассивация. (См. Также Импульсное зарядное устройство ниже). При необходимости можно также измерить напряжение холостого хода батареи во время периода покоя.

Оптимальный профиль тока зависит от химического состава и конструкции клетки.

  • Рывочная зарядка Также называется Reflex или Зарядка с отрицательным импульсом Используется в сочетании с импульсной зарядкой, он применяет очень короткий импульс разрядки, обычно в 2–3 раза превышающий ток зарядки в течение 5 миллисекунд, во время периода покоя зарядки деполяризовать клетку. Эти импульсы вытесняют любые пузырьки газа, скопившиеся на электродах во время быстрой зарядки, ускоряя процесс стабилизации и, следовательно, общий процесс зарядки.Высвобождение и распространение пузырьков газа известно как «отрыжка». Были сделаны противоречивые заявления об улучшении скорости заряда и срока службы батареи, а также об удалении дендритов, которое стало возможным с помощью этого метода. Самое меньшее, что можно сказать, это то, что «не повреждает аккумулятор».
  • IUI Charging Это недавно разработанный профиль зарядки, используемый для быстрой зарядки стандартных свинцово-кислотных аккумуляторов от определенных производителей.Он подходит не для всех свинцово-кислотных аккумуляторов. Первоначально батарея заряжается с постоянной (I) скоростью, пока напряжение элемента не достигнет заданного значения — обычно напряжения, близкого к тому, при котором происходит выделение газа. Эта первая часть цикла зарядки известна как фаза объемной зарядки. По достижении заданного напряжения зарядное устройство переключается в фазу постоянного напряжения (U), и ток, потребляемый батареей, будет постепенно падать, пока не достигнет другого заданного уровня. Эта вторая часть цикла завершает нормальную зарядку аккумулятора с медленно убывающей скоростью.Наконец, зарядное устройство снова переключается в режим постоянного тока (I), и при выключении зарядного устройства напряжение продолжает расти до нового более высокого предустановленного значения. Эта последняя фаза используется для выравнивания заряда отдельных ячеек батареи, чтобы продлить срок ее службы. См. Балансировка ячеек.
  • Капельная зарядка Капельная зарядка предназначена для компенсации саморазряда аккумулятора. Непрерывный заряд. Долговременная зарядка постоянным током для использования в режиме ожидания.Скорость заряда зависит от частоты разряда. Не подходит для некоторых типов батарей, например NiMH и литий, которые могут выйти из строя из-за перезарядки. В некоторых приложениях зарядное устройство предназначено для переключения на непрерывную подзарядку, когда аккумулятор полностью заряжен.
  • Плавающий заряд . Аккумулятор и нагрузка постоянно подключены параллельно к источнику заряда постоянного тока и имеют постоянное напряжение ниже верхнего предела напряжения аккумулятора.Используется для систем резервного питания аварийного питания. В основном используется со свинцово-кислотными аккумуляторами.
  • Случайная зарядка Все вышеперечисленные приложения включают контролируемую зарядку аккумулятора, однако есть много приложений, в которых энергия для зарядки аккумулятора доступна только или доставляется случайным, неконтролируемым образом. Это относится к автомобильным приложениям, где энергия зависит от частоты вращения двигателя, которая постоянно меняется. Проблема стоит более остро в приложениях EV и HEV, в которых используется рекуперативное торможение, поскольку при торможении возникают большие всплески мощности, которые должна поглощать аккумулятор.Более щадящие применения — солнечные панели, которые можно заряжать только при ярком солнце. Все это требует специальных методов для ограничения зарядного тока или напряжения до уровней, которые может выдержать аккумулятор.

Зарядка

Батареи можно заряжать с разной скоростью в зависимости от требований. Типичные ставки показаны ниже:

  • Медленная зарядка = Ночь или 14-16 часов зарядки при 0.1С рейтинг
  • Быстрая зарядка = от 3 до 6 часов зарядки при скорости 0,3 ° C
  • Быстрая зарядка = менее 1 часа зарядки при скорости 1.0C

Медленная зарядка

Медленная зарядка может выполняться в относительно простых зарядных устройствах и не должна приводить к перегреву аккумулятора. По окончании зарядки аккумуляторы следует вынуть из зарядного устройства.

  • Никады, как правило, наиболее устойчивы к перезарядке, и их можно оставить на непрерывной подзарядке в течение очень длительных периодов времени, поскольку процесс их рекомбинации имеет тенденцию поддерживать напряжение на безопасном уровне. Постоянная рекомбинация поддерживает высокое внутреннее давление в ячейке, поэтому уплотнения постепенно протекают. Он также поддерживает температуру ячейки выше окружающей среды, а более высокие температуры сокращают срок службы.Так что жизнь все равно лучше если снимать с зарядного устройства.
  • Свинцово-кислотные аккумуляторы немного менее надежны, но могут выдерживать кратковременный непрерывный заряд. Затопленные батареи, как правило, расходуют воду, а SLA рано умирают из-за коррозии сети. Свинцово-кислотные вещества следует либо оставить в неподвижном состоянии, либо подзаряжать (поддерживать постоянное напряжение значительно ниже точки выделения газа).
  • С другой стороны, никель-металлгидридные элементы
  • будут повреждены при длительной подзарядке.
  • Однако литий-ионные элементы
  • не допускают перезарядки или перенапряжения, и заряд должен быть немедленно прекращен при достижении верхнего предела напряжения.

Быстрая / быстрая зарядка

По мере увеличения скорости зарядки возрастает опасность перезарядки или перегрева аккумулятора. Предотвращение перегрева батареи и прекращение заряда, когда батарея полностью заряжена, становятся гораздо более важными.Химический состав каждого элемента имеет свою характеристическую кривую зарядки, и зарядные устройства для аккумуляторов должны быть спроектированы так, чтобы определять условия окончания заряда для конкретного химического состава. Кроме того, должна быть предусмотрена некоторая форма отключения по температуре (TCO) или тепловой предохранитель, чтобы предотвратить перегрев аккумулятора во время процесса зарядки.

Для быстрой зарядки и быстрой зарядки требуются более сложные зарядные устройства. Поскольку эти зарядные устройства должны быть разработаны для определенного химического состава элементов, обычно невозможно зарядить один тип элементов в зарядном устройстве, которое было разработано для другого химического состава элементов, и вероятно повреждение.Универсальные зарядные устройства, способные заряжать все типы ячеек, должны иметь сенсорные устройства для определения типа элемента и применения соответствующего профиля зарядки.

Обратите внимание на , что для автомобильных аккумуляторов время зарядки может быть ограничено доступной мощностью, а не характеристиками аккумулятора. Внутренние кольцевые силовые цепи на 13 А могут выдавать только 3 кВт. Таким образом, при условии отсутствия потери эффективности в зарядном устройстве, десятичасовая зарядка потребляет максимум 30 кВт · ч энергии.На 100 миль хватит. Сравните это с заправкой автомобиля бензином.

Требуется около 3 минут, чтобы поместить в бак достаточно химической энергии, чтобы обеспечить 90 кВт / ч механической энергии, достаточной для проезда автомобиля на 300 миль. Подача 90 кВт / ч электроэнергии в батарею за 3 минуты было бы эквивалентно скорости зарядки 1,8 мегаватт !!

Способы прекращения начисления

В следующей таблице приведены методы прекращения заряда для популярных аккумуляторов.Это объясняется в разделе ниже.

Способы прекращения начисления

SLA

Nicad

NiMH

Литий-ионный

Медленная зарядка

Таймер

Предел напряжения

Быстрая зарядка 1

Имин

NDV

дТ / дт

Imin при пределе напряжения

Быстрая зарядка 2

Delta TCO

дТ / дт

dV / dt = 0

Прекращение резервного копирования 1

Таймер

TCO

TCO

TCO

Прекращение резервного копирования 2

DeltaTCO

Таймер

Таймер

Таймер

TCO = отключение по температуре

Delta TCO = Превышение температуры окружающей среды

I min = минимальный ток

Методы контроля заряда

Было разработано множество различных схем зарядки и оконечной нагрузки для разного химического состава и различных приложений.Ниже приведены наиболее распространенные из них.

Управляемая зарядка

Обычная (медленная) зарядка

  • Полупостоянный ток Простой и экономичный. Самый популярный. Таким образом, при слабом токе тепло не выделяется, а происходит медленно, обычно от 5 до 15 часов. Скорость заряда 0,1С. Подходит для Nicads
  • Управляемая таймером система зарядки Просто и экономично.Надежнее, чем полупостоянный ток. Использует таймер IC. Зарядки со скоростью 0,2 ° C в течение заданного периода времени с последующей подзарядкой 0,05 ° C. Избегайте постоянного перезапуска таймера, вставляя и вынимая аккумулятор из зарядного устройства, поскольку это снизит его эффективность. Рекомендуется установка абсолютного отсечки температуры. Подходит для аккумуляторов Nicad и NiMH.

Быстрая зарядка (1-2 часа)

  • Отрицательный треугольник V (NDV) Система отсечки заряда
  • Это самый популярный способ быстрой зарядки для Nicads.

    Батареи заряжаются постоянным током со скоростью от 0,5 до 1,0 С. Напряжение батареи повышается по мере того, как зарядка достигает пика при полной зарядке, а затем падает. Это падение напряжения, -delta V, происходит из-за поляризации или накопления кислорода внутри элемента, которое начинает происходить, когда элемент полностью заряжен. В этот момент элемент попадает в опасную зону перезаряда, и температура начинает быстро расти, поскольку химические изменения завершены, и избыточная электрическая энергия преобразуется в тепло.Падение напряжения происходит независимо от уровня разряда или температуры окружающей среды, и поэтому его можно обнаружить и использовать для определения пика и, следовательно, для отключения зарядного устройства, когда аккумулятор полностью заряжен, или переключения на непрерывный заряд.

    Этот метод не подходит для зарядных токов менее 0,5 C, так как дельта V становится трудно обнаружить. Ложная дельта V может возникнуть в начале заряда при чрезмерно разряженных элементах. Это преодолевается с помощью таймера, который задерживает обнаружение дельты V в достаточной степени, чтобы избежать проблемы.Свинцово-кислотные батареи не демонстрируют падения напряжения после завершения зарядки, поэтому этот метод зарядки не подходит для батарей SLA.

  • dT / dt Система зарядки NiMH аккумуляторы не демонстрируют такого выраженного падения напряжения NDV, когда они достигают конца цикла зарядки, как это видно на графике выше, поэтому метод отключения NDV не является надежным для завершения NiMH плата.Вместо этого зарядное устройство определяет скорость увеличения температуры элемента в единицу времени. Когда достигается заданная скорость, быстрая зарядка останавливается, и метод зарядки переключается на непрерывную зарядку. Этот метод более дорогой, но позволяет избежать перезарядки и продлевает срок службы. Поскольку длительная непрерывная зарядка может повредить NiMH аккумулятор, рекомендуется использовать таймер для регулирования общего времени зарядки.
  • Постоянный ток Система заряда с постоянным напряжением (CC / CV) .Используется для зарядки литиевых и некоторых других батарей, которые могут быть повреждены при превышении верхнего предела напряжения. Указанная производителем скорость зарядки при постоянном токе — это максимальная скорость зарядки, которую батарея может выдержать без ее повреждения. Необходимы особые меры предосторожности, чтобы максимально увеличить скорость зарядки и гарантировать, что аккумулятор полностью заряжен, и в то же время избежать перезарядки. По этой причине рекомендуется переключать метод зарядки на постоянное напряжение до того, как напряжение элемента достигнет своего верхнего предела.Обратите внимание, что это означает, что зарядные устройства для литий-ионных элементов должны быть способны контролировать как зарядный ток, так и напряжение аккумулятора.
  • Чтобы поддерживать заданную скорость зарядки постоянного тока, зарядное напряжение должно увеличиваться синхронно с напряжением элемента, чтобы преодолеть обратную ЭДС элемента по мере его зарядки. Это происходит довольно быстро в режиме постоянного тока до тех пор, пока не будет достигнут верхний предел напряжения элемента, после чего напряжение заряда поддерживается на этом уровне, известном как плавающий уровень, во время режима постоянного напряжения.В течение этого периода постоянного напряжения ток уменьшается до тонкой струйки по мере того, как заряд приближается к завершению. Отключение происходит при достижении заданной минимальной точки тока, которая указывает на полный заряд. См. Также Литиевые батареи — Зарядка и производство батарей — Формирование.

    Примечание 1 : Если указаны скорости Fast Charging , они обычно относятся к режиму постоянного тока.В зависимости от химического состава ячейки этот период может составлять от 60% до 80% времени до полной зарядки. Эти значения не следует экстраполировать для оценки времени полной зарядки аккумулятора, поскольку скорость зарядки быстро снижается в течение периода постоянного напряжения.

    Примечание 2: Поскольку литиевые батареи невозможно зарядить со скоростью зарядки C, указанной производителями, в течение всего времени зарядки, также невозможно оценить время зарядки полностью разряженной батареи, просто разделив Емкость аккумулятора в ампер-часах с указанной скоростью зарядки C, так как скорость изменяется в процессе зарядки.Следующее уравнение, однако, дает разумное приближение времени полной зарядки разряженной батареи при использовании стандартного метода зарядки CC / CV:

    Время зарядки (час) = 1,3 * (емкость аккумулятора в Ач) / (ток зарядки в режиме CC)

  • Управляемая напряжением система заряда. Быстрая зарядка со скоростью от 0,5 до 1,0 С. Зарядное устройство выключилось или переключилось на непрерывный заряд при достижении заданного напряжения.Следует комбинировать с датчиками температуры в батарее, чтобы избежать перезарядки или теплового разгона.
  • Система заряда с конусным регулированием напряжения Аналогично системе с контролем напряжения. Как только заданное напряжение достигнуто, ток быстрой зарядки постепенно уменьшается за счет уменьшения напряжения питания, а затем переключается на непрерывный заряд. Подходит для аккумуляторов SLA, позволяет безопасно достичь более высокого уровня заряда. (См. Также ток конуса ниже)
  • Таймер отказоустойчивости

    Ограничивает ток заряда, который может протекать, чтобы удвоить емкость элемента.Например, для ячейки 600 мАч ограничьте заряд до 1200 мАч. В крайнем случае, если отключение не достигнуто другими способами.

  • Предварительная зарядка
  • В качестве меры предосторожности для аккумуляторов большой емкости часто используется этап предварительной зарядки. Цикл зарядки инициируется низким током. Если соответствующего повышения напряжения батареи нет, это указывает на возможное короткое замыкание в батарее.

  • Интеллектуальная система зарядки
    Интеллектуальные системы зарядки объединяют системы управления в зарядном устройстве с электроникой внутри батареи, что позволяет более точно контролировать процесс зарядки. Преимущества — более быстрая и безопасная зарядка и более длительный срок службы аккумулятора. Такая система описана в разделе «Системы управления батареями».

Примечание

Большинство зарядных устройств, поставляемых с устройствами бытовой электроники, такими как мобильные телефоны и портативные компьютеры, просто обеспечивают постоянный источник напряжения.Требуемый профиль напряжения и тока для зарядки аккумулятора обеспечивается (или должен предоставляться) от электронных схем, либо внутри самого устройства, либо внутри аккумуляторной батареи, а не от зарядного устройства. Это обеспечивает гибкость при выборе зарядных устройств, а также служит для защиты устройства от потенциального повреждения из-за использования неподходящих зарядных устройств.

Измерение напряжения

Во время зарядки для простоты напряжение аккумулятора обычно измеряется на проводах зарядного устройства.Однако для сильноточных зарядных устройств может наблюдаться значительное падение напряжения на проводах зарядного устройства, что приводит к недооценке истинного напряжения аккумулятора и, как следствие, к недозаряду аккумулятора, если напряжение аккумулятора используется в качестве триггера отключения. Решение состоит в том, чтобы измерить напряжение с помощью отдельной пары проводов, подключенных непосредственно к клеммам аккумулятора. Поскольку вольтметр имеет высокий внутренний импеданс, падение напряжения на выводах вольтметра будет минимальным, и показания будут более точными.Этот метод называется соединением Кельвина. См. Также DC Testing.

Типы зарядных устройств

Зарядные устройства

обычно включают некоторую форму регулирования напряжения для управления зарядным напряжением, подаваемым на аккумулятор. Выбор схемы зарядного устройства обычно зависит от цены и качества. Ниже приведены некоторые примеры:

  • Регулятор режима переключения (Switcher) — Использует широтно-импульсную модуляцию для управления напряжением.Низкое рассеивание мощности при больших колебаниях входного напряжения и напряжения батареи. Более эффективен, чем линейные регуляторы, но более сложен.
    Требуется большой пассивный выходной фильтр LC (индуктор и конденсатор) для сглаживания импульсной формы волны. Размер компонента зависит от текущей пропускной способности, но может быть уменьшен путем использования более высокой частоты переключения, обычно от 50 кГц до 500 кГц., Поскольку размер требуемых трансформаторов, катушек индуктивности и конденсаторов обратно пропорционален рабочей частоте.
    Коммутация сильных токов вызывает электромагнитные помехи и электрические помехи.
  • Регулятор серии
  • (линейный) — менее сложный, но с большими потерями — требуется радиатор для рассеивания тепла в последовательном транзисторе с понижением напряжения, который компенсирует разницу между напряжением питания и выходным напряжением. Весь ток нагрузки проходит через регулирующий транзистор, который, следовательно, должен быть устройством большой мощности. Поскольку нет переключения, он обеспечивает чистый постоянный ток и не требует выходного фильтра.По той же причине конструкция не страдает проблемой излучаемых и кондуктивных выбросов и электрических шумов. Это делает его подходящим для малошумных беспроводных и радиоприложений.
    С меньшим количеством компонентов они также меньше.
  • Шунтирующий регулятор Шунтирующий регулятор часто используется в фотоэлектрических системах, поскольку они относительно дешевы в сборке и просты в конструкции. Зарядный ток регулируется переключателем или транзистором, подключенным параллельно фотоэлектрической панели и аккумуляторной батарее.Перезаряд батареи предотвращается за счет короткого замыкания (шунтирования) выхода PV через транзистор, когда напряжение достигает заданного предела. Если напряжение батареи превышает напряжение питания фотоэлектрических модулей, шунт также защитит фотоэлектрическую панель от повреждения из-за обратного напряжения путем разряда батареи через шунт. Регуляторы серии обычно обладают лучшими характеристиками контроля и заряда.
  • Понижающий регулятор Импульсный регулятор, который включает понижающий преобразователь постоянного тока в постоянный.У них высокий КПД и низкие тепловые потери. Они могут справляться с высокими выходными токами и генерировать меньше радиочастотных помех, чем обычный импульсный стабилизатор. Простая бестрансформаторная конструкция с низким коммутационным напряжением и небольшим выходным фильтром.
  • Импульсное зарядное устройство . Использует последовательный транзистор, который также можно переключать. При низком напряжении батареи транзистор остается включенным и проводит ток источника непосредственно к батарее. Когда напряжение батареи приближается к желаемому регулирующему напряжению, последовательный транзистор подает импульс входного тока для поддержания желаемого напряжения.Поскольку он действует как импульсный источник питания в течение части цикла, он рассеивает меньше тепла и поскольку он действует как линейный источник питания в течение части времени, выходные фильтры могут быть меньше. Импульсный режим позволяет аккумулятору стабилизироваться (восстанавливаться) с небольшими приращениями заряда при прогрессивно высоких уровнях заряда во время зарядки. В периоды покоя поляризация клетки снижается. Этот процесс обеспечивает более быструю зарядку, чем это возможно при одной продолжительной зарядке высокого уровня, которая может повредить аккумулятор, поскольку не позволяет постепенно стабилизировать активные химические вещества во время зарядки.Импульсные зарядные устройства обычно нуждаются в ограничении тока на входе источника по соображениям безопасности, что увеличивает стоимость.
  • Зарядное устройство универсальной последовательной шины (USB)
  • Спецификация USB была разработана группой производителей компьютеров и периферийных устройств для замены множества патентованных стандартов механических и электрических соединений для передачи данных между компьютерами и внешними устройствами. Он включал двухпроводное соединение для передачи данных, линию заземления и линию электропитания 5 В, обеспечиваемую главным устройством (компьютером), которая была доступна для питания внешних устройств.Неправильное использование порта USB заключалось в обеспечении источника 5 В не только для непосредственного питания периферийных устройств, но и для зарядки любых батарей, установленных в этих внешних устройствах. В этом случае само периферийное устройство должно включать в себя необходимую схему управления зарядом для защиты аккумулятора. Исходный стандарт USB определял скорость передачи данных 1,5 Мбит / с и максимальный ток зарядки 500 мА.

    Питание всегда передается от хоста к устройству, но данные могут передаваться в обоих направлениях.По этой причине разъем USB-хоста механически отличается от разъема устройства USB, и поэтому кабели USB имеют разные разъемы на каждом конце. Это предотвращает подключение любого 5-вольтового соединения от внешнего источника USB к главному компьютеру и, таким образом, возможное повреждение главной машины.

    Последующие обновления увеличили стандартную скорость передачи данных до 5 Гбит / с, а доступный ток — до 900 мА. Однако популярность USB-подключения привела к появлению множества нестандартных вариантов, в частности, к использованию USB-разъема для обеспечения чистого источника питания без соответствующего подключения для передачи данных.В таких случаях порт USB может просто включать в себя регулятор напряжения для подачи 5 В от автомобильной шины питания 12 В или выпрямитель и регулятор для подачи 5 В постоянного тока от сети переменного тока 110 или 240 В с выходными токами до 2100 мА. В обоих случаях устройство, принимающее питание, должно обеспечивать необходимый контроль заряда. Источники питания USB с питанием от сети, часто известные как «глупые» зарядные устройства USB, могут быть встроены в корпус сетевых вилок или в отдельные розетки USB в настенных розетках переменного тока.

    Подробнее о USB-соединениях см. В разделе, посвященном шинам передачи данных от аккумулятора.

  • Индуктивная зарядка
  • Индуктивная зарядка не относится к процессу зарядки самого аккумулятора. Имеется в виду конструкция зарядного устройства. По сути, входная сторона зарядного устройства, часть, подключенная к сети переменного тока, состоит из трансформатора, который разделен на две части. Первичная обмотка трансформатора размещена в блоке, подключенном к сети переменного тока, а вторичная обмотка трансформатора размещена в том же герметичном блоке, который содержит батарею вместе с остальной частью обычной электроники зарядного устройства.Это позволяет заряжать аккумулятор без физического подключения к сети и без обнажения каких-либо контактов, которые могут привести к поражению электрическим током пользователя.

    Примером малой мощности является электрическая зубная щетка. Зубная щетка и зарядное основание образуют трансформатор, состоящий из двух частей: первичная индукционная катушка находится в основании, а вторичная индукционная катушка и электроника содержатся в зубной щетке.Когда зубная щетка помещается в основание, создается полный трансформатор, и индуцированный ток во вторичной катушке заряжает аккумулятор. При использовании прибор полностью отключен от электросети, а поскольку аккумуляторный блок находится в герметичном отсеке, зубную щетку можно безопасно погружать в воду.

    Техника также используется для зарядки имплантатов медицинских батарей.

    Примером высокой мощности является система зарядки, используемая для электромобилей.Принципиально подобная зубной щетке, но в большем масштабе, это также бесконтактная система. Индукционная катушка в электромобиле принимает ток от индукционной катушки в полу гаража и заряжает автомобиль в течение ночи. Чтобы оптимизировать эффективность системы, воздушный зазор между статической катушкой и съемной катушкой можно уменьшить, опуская приемную катушку во время зарядки, и транспортное средство должно быть точно размещено над зарядным устройством.

    Аналогичная система использовалась для электрических автобусов, которые принимают ток от индукционных катушек, встроенных под каждой автобусной остановкой, что позволяет увеличить дальность действия автобуса или, наоборот, для одного и того же маршрута можно указать батареи меньшего размера.Еще одно преимущество этой системы заключается в том, что если заряд батареи постоянно пополняется, глубина разряда может быть минимизирована, а это приводит к увеличению срока службы. Как показано в разделе Срок службы батареи, время цикла увеличивается экспоненциально с уменьшением глубины разряда.

    Более простая и менее дорогая альтернатива этой возможной зарядке состоит в том, что транспортное средство создает токопроводящую связь с электрическими контактами на подвесном портале на каждой автобусной остановке.

    Также были сделаны предложения по установке сетки индуктивных зарядных катушек под поверхностью вдоль дорог общего пользования, чтобы позволить транспортным средствам собирать заряд во время движения, однако никаких практических примеров пока не установлено.

  • Зарядные станции для электромобилей
  • Подробнее о специализированных зарядных устройствах высокой мощности, используемых для электромобилей, см. В разделе «Инфраструктура для зарядки электромобилей».

Зарядное устройство Источники питания

При указании зарядного устройства также необходимо указать источник, от которого зарядное устройство получает свою мощность, его доступность, а также его напряжение и диапазон мощности. Следует также учитывать потери эффективности зарядного устройства, особенно для зарядных устройств большой мощности, где величина потерь может быть значительной. Ниже приведены некоторые примеры.

Управляемая зарядка

Простота установки и управления.

  • Сеть переменного тока
  • Многие портативные зарядные устройства малой мощности для небольших электроприборов, таких как компьютеры и мобильные телефоны, должны работать на международных рынках. Поэтому они имеют автоматическое определение напряжения сети и, в особых случаях, частоты сети с автоматическим переключением на соответствующую входную цепь.

    Для приложений с более высокой мощностью могут потребоваться специальные меры. Мощность однофазной сети обычно ограничивается примерно 3 кВт. Трехфазное питание может потребоваться для зарядки аккумуляторов большой емкости (более 20 кВтч), например, используемых в электромобилях, которые могут потребовать скорости зарядки более 3 кВт для достижения разумного времени зарядки.

  • Регулируемый источник питания постоянного тока
  • Может поставляться установками специального назначения, такими как передвижное генерирующее оборудование для индивидуальных приложений.

  • Специальные зарядные устройства
  • Портативные источники, такие как солнечные батареи.

Возможность зарядки

Возможная зарядка — это зарядка аккумулятора при наличии питания или между частичными разрядками, а не ожидание полной разрядки аккумулятора. Он используется с батареями в циклическом режиме и в приложениях, когда энергия доступна только с перерывами.

Он может быть подвержен большим колебаниям в доступности энергии и больших колебаниях уровней мощности. Для защиты аккумулятора от перенапряжения требуется специальная управляющая электроника. Избегая полной разрядки аккумулятора, можно увеличить срок службы.

Доступность влияет на спецификацию аккумулятора, а также на зарядное устройство.

Типичные области применения: —

  • Бортовые автомобильные зарядные устройства (Генераторы, рекуперативное торможение)
  • Зарядные устройства индукционные (в местах остановки транспортных средств)

Механическая зарядка

Это применимо только к определенному химическому составу клеток.Это не зарядное устройство в обычном понимании этого слова. Механическая зарядка используется в некоторых батареях большой мощности, таких как батареи Flow и воздушно-цинковые батареи. Цинково-воздушные батареи заряжаются путем замены цинковых электродов. Аккумуляторы Flow можно перезарядить, заменив электролит.

Механическая зарядка осуществляется за считанные минуты. Это намного быстрее, чем длительное время зарядки, связанное с традиционной электрохимией обратимых ячеек, которое может занять несколько часов.Поэтому воздушно-цинковые батареи использовались для питания электрических автобусов, чтобы решить проблему чрезмерного времени зарядки.

Производительность зарядного устройства

Тип батареи и область применения, в которой она используется, устанавливают требования к характеристикам, которым должно соответствовать зарядное устройство.

  • Чистота выходного напряжения
  • Зарядное устройство должно обеспечивать чистое регулируемое выходное напряжение с жесткими ограничениями на выбросы, пульсации, шум и радиочастотные помехи (RFI), которые могут вызвать проблемы для аккумулятора или цепей, в которых оно используется.

В приложениях с большой мощностью производительность зарядки может быть ограничена конструкцией зарядного устройства.

  • КПД
  • При зарядке аккумуляторов большой мощности потери энергии в зарядном устройстве могут значительно увеличить время зарядки и эксплуатационные расходы приложения. Типичный КПД зарядного устройства составляет около 90%, отсюда и необходимость в эффективных конструкциях.

  • Пусковой ток
  • При первоначальном включении зарядного устройства на разряженную батарею пусковой ток может быть значительно выше максимального указанного зарядного тока. Следовательно, зарядное устройство должно быть рассчитано на передачу или ограничение этого импульса тока.

  • Коэффициент мощности
  • Это также может быть важным фактором для зарядных устройств большой мощности.

См. Также «Контрольный список зарядного устройства»

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *