Формула расчета тока по мощности и напряжению: Расчет силы тока по мощности – Калькулятор + формулы

Содержание

Расчёт мощности по току и напряжению онлайн

Калькулятор расчёта мощности по току и напряжению

Данный калькулятор позволяет выполнить расчёт мощности по току и напряжению. Параметры необходимо вводить в базовых величинах, ток в амперах (А), напряжение в вольтах (В).

Формула расчёта мощности по току и напряжению

P = I*U ,

  1. P— мощность потребителя, Вт;
  2. I— cила тока, А;
  3. U— напряжение в сети, В;

Обращаем Ваше внимание, что приведённый выше онлайн калькулятор расчёта мощности, производит упрощённый расчёт мощности по току и напряжению, по упрощённой формуле. Онлайн расчёт данным способом позволяет, получить значения близкие к реальным.

Рекомендуем!

Формула расчёта мощности по току и напряжению для однофазной сети:

Однако, существуют формулы и для более точного расчёта. Если Вы обладаете, всеми необходимыми техническими характеристиками сети и устройства, то более точный расчёт мощности для однофазной сети, Вы можете произвести по формуле:

P = I*U*cosφ ,

  1. P— мощность потребителя, Вт;
  2. I— cила тока, А;
  3. U— напряжение в сети, В;
  4. cosφ -безразмерная величина, которая равна отношению активной мощности к полной (коэффициент мощности). По умолчанию значение cosφ равно 0,95 для бытовых электросетей и от 0,95 до 0,65 для промышленных.

Формула расчёта мощности по току и напряжению для трёхфазной сети:

P = 1,73*I*U*cosφ ,

  1. P— мощность потребителя, Вт;
  2. I— cила тока, А;
  3. U— напряжение в сети, В;
  4. cosφ -безразмерная величина, которая равна отношению активной мощности к полной (коэффициент мощности).
    По умолчанию значение cosφ равно 0,95 для бытовых электросетей и от 0,95 до 0,65 для промышленных.

Примерные значения cosφ для некоторых типов оборудования:


  • лампы накаливания — 1;
  • обогреватели, электропечи, электроплиты и т.п. — 0,95;
  • электродвигатели — 0,85 ..0,87;
  • дрели, отрезные машинки и т.п. — 0,85 ..0,9;
  • электродвигатели компрессоров, холодильников, стиральных машин и т.п. — 0,7…0,85
  • компьютеры, телевизоры, СВЧ печи, кондиционеры, вентиляторы, энергосберегающие лампы — 0,5 ..0,8

Более точные значения cosφ зачастую можно найти в паспорте прибора или на бирке.

Наши ресурсы в социальных сетях, присоединяйтесь:

[ratings]

Понравилась статья? Поделиться с друзьями:

РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ОНЛАЙН — ОПРЕДЕЛЕНИЕ НАПРЯЖЕНИЯ, ТОКА, МОЩНОСТИ И СЕЧЕНИЯ ПРОВОДНИКА

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести

расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

Онлайн расчет:

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

I=P/U=2000/220В = 9А

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

 — БЛОК ПИТАНИЯ ДЛЯ СВЕТОДИОДНЫХ ЛЕНТ

 — ЗАЩИТНОЕ ЗАНУЛЕНИЕ

 — СВЕТОДИОДНЫЕ СВЕТИЛЬНИКИ — ЛУЧШЕ НЕ ПРИДУМАЕШЬ!

 — АЛМАЗНАЯ РЕЗКА БЕТОНА И ЖБ КОНСТРУКЦИЙ

 Автор — Антон Писарев


Как найти мощность трехфазной сети по току и напряжению, расчет по формулам

Трехфазные и однофазные сети распространены примерно одинаково в частных и многоквартирных домах. Но стоит заметить, что промышленная сеть является трехфазной по умолчанию и в большинстве случаев к улице, где расположены частные дома или к многоквартирному дому подходит как раз-таки трехфазная сеть. А уже потом ее разветвляют на три однофазные, и заводят к конечному потребителю тока.

Расчет сделан не просто так, а с целью обеспечить максимально эффективную передачу электричества от электростанции к вам, а также преследуется цель наибольшего снижения потерь электричества в транспортировочном процессе, ведь на ток оказывает сопротивление проводник, по которому этот самый ток течет.

Если вам интересно, какая сеть у вас в доме или квартире, то определить это достаточно просто. Если вы откроете электрический щиток и посмотрите, сколько проводов используется для вашей квартиры, то если вы увидите 2 или 3 провода, это однофазная сеть, 1 и 2 провод — это фаза и ноль, 3 провод, если он присутствует — это заземление. В трехфазной же сети проводов будет или 4, или 5. Три фазы А, В,С, ноль и если присутствует — заземляющий проводник.

Так же определяется и количество фаз по так называемому пакетнику, вводному автоматическому выключателю. Для однофазной сети выделяется 2 или 1 сдвоенный кабель, а в трехфазной будет 1 строенный кабель и одинарный. Но не следует забывать о напряжении, с которым нужно быть очень осторожным.

Для того чтобы произвести расчет по току, и расчет по напряжению чтобы узнать мощность несложно, как правило, в трехфазных сетях нуждаются большие энергопотребители. С помощью формулы, приведенной в статье, произвести расчет мощности, используя значения тока и напряжения, вы сможете с легкостью.

Узнаем потребляемую мощность электричества

Итак, перейдем к существу, нам нужно узнать мощность электричества по току и напряжению. Прежде всего нужно знать, сколько потреблять энергии вы будете. Это легко узнать, сопоставив все энергопотребители в вашем доме. Давайте выберем самую распространенную технику, без которой не обойтись современному человеку. Кстати, узнать сколько потребляет тот или иной прибор, можно в паспортных данных вашего электроприбора, или на бирке, которая может быть на корпусе. Начнем с самого высокого потребления напряжения:

  • Стиральная машина — 2700 Ватт
  • Водонагреватель (бойлер) — 2000 Ватт
  • Утюг — 1875 Ватт
  • Кофеварка — 1200 Ватт
  • Пылесос — 1000 Ватт
  • Микроволновая печь — 800 Ватт
  • Компьютер — 500 Ватт
  • Освещение — 500 Ватт
  • Холодильник — 300 Ватт
  • Телевизор — 100 Ватт

По формуле нам нужно все добавить и поделить на 1000, для перевода из ватт в киловатты.

Суммарно у нас получилось 10975 Ватт, переведем в киловатты, поделив на 1000.

Итого у нас потребление 10.9 кВт.

Для обычного обывателя вполне достаточно и одной фазы. Особенно если вы не собираетесь включать все одновременно, что, конечно же, маловероятно.

Но нужно помнить что потребление тока может быть значительно выше, особенно если вы живете в частном доме и/или у вас есть гараж, тогда потребление одного прибора может составлять 4-5 кВт. Тогда вам будет предпочтительнее трехфазная сеть, как более мощная и позволяющая подключать значительно более мощных потребителей тока.

Трехфазная сеть

Давайте более подробно рассмотрим именно трехфазную сеть, как более предпочтительную для нас. Для начала

приведем сравнительную характеристику однофазной и трехфазной сети. Выделим некоторые плюсы и минусы.

Когда используется трехфазная сеть есть вероятность что нагрузка распределиться неравномерно на каждую фазу. Если, к примеру, от первой фазы будет запитан электрический котел и мощный нагреватель, а от второй — телевизор и холодильник, то будет иметь место такое явления, как «перекос фаз» — несимметрия напряжений и токов, что может быть следствием выхода из строя некоторых потребителей тока. Для избежания подобной ситуации следует тщательнее планировать распределение нагрузки еще на начальном этапе проектирования сети.

Также трехфазной сети потребуется

большее число проводов, кабелей и автоматических выключателей, пропускающих ток, так как мощность будет значительно выше, соответственно монтаж такой сети будет дороже.

Однофазная сеть по возможной потенциальной мощности уступает трехфазной. Так что если вы предполагаете использовать много мощных потребителей тока, то второй вариант будет соответственно лучше. Для примера, если в дом заходит двужильный (трехжильный если он с заземлением), с линии электропередач, кабель сечением 16 мм2, тогда общая мощность всех электропотребителей в доме не должна превышать 14кВт, как в примере, наведенном выше.

Но если же вы будете использовать то же сечение провода для трехфазной сети, но соответственно кабель будет 4-5 жильным

, то уже тогда максимальная суммарная мощность будет равняться уже 42 кВт.

Рассчитываем мощность трехфазной сети

Для расчета примем некий производственный цех, в котором установлены тридцать электродвигателей. В цех заходит четырехпроводная линия, помним что это 3 фазы: A, B, C, и нейтраль(ноль). Номинальное напряжение 380/220 вольт. Суммарная мощность всех двигателей составляет Ру1 — 48кВт, еще у нас есть осветительные лампы в мастерской, суммарная мощность которых составляет Ру2- 2кВт.

  • Ру — установленная суммарная мощность группы потребителей, по величине равная сумме их заявленных мощностей, измеряется в кВт.
  • Кс — коэффициент спроса при режиме наивысшей нагрузки. Коэффициент спроса учитывает самое большое возможное число включений приемников группы. Для электродвигателей коэффициент спроса должен брать в расчет величину их загрузки.

Коэффициент спроса для осветительной (освещения) нагрузки, то есть освещения, Кс2-0,9, и для силовой нагрузки, то есть электродвигателей Кс1=0,35. Усредненный коэффициент мощности для всех потребителей cos( φ ) = 0,75. Необходимо найти расчетный ток линии.

Расчет

Подсчитаем расчетную силовую нагрузку P1 = 0,35*48 = 16,8 кВт

и расчетную осветительную нагрузку Р2 = 0,9 *2 = 1.8 кВт.

Полная расчетная нагрузка P = 16,8+1,8=18,6 кВт;

Расчетный ток считаем с помощью формулы:

где

Р — расчетная мощность потребителя (электродвигатели и освещение), кВт;

Uн — напряжение номинальное на клеммах приемника, которое равняется междуфазному (линейному, когда подключается фаза и фаза, тоесть 380 В) то есть напряжению в сети, от которой он запитан, В;

cos ( φ ) — коэффициент мощности приемника.

Таким образом, мы произвели расчет мощности по току, который позволит вам разобраться с трехфазными сетями. Но перейдя непосредственно к монтажу системы не забывайте технику безопасности, ведь ток и напряжение опасное для вашей жизни явление.

нагрузка в однофазных и трехфазных сетях

Правильно рассчитать силу тока необходимо для многих работ, связанных с электропроводкой и проектированием схемотехнических и бытовых приборов. Ошибки или пренебрежение такими расчётами могут иметь серьезные последствия, так как от силы и мощности тока зависит тип прокладываемого кабеля, правильный выбор которого определяет пожарную безопасность и экономическую целесообразность.

Принципы расчета тока

Знать в амперах силу тока, протекающего в цепи, важно для расчета сечения провода, которым прокладывается проводка, и выбора автомата, предохраняющего сеть от перегрузок. Большее, чем нужно, значение сечения вызывает дополнительные затраты, меньшее — вызовет перегрев электропроводки, что чревато расплавлением изоляции кабеля и пожаром.

Правильный выбор автомата также важен, так как большой запас по току окажется бесполезен, если выключатель сработает поздно, и оборудование успеет выйти из строя, а слишком маленький запас вызовет очень частое срабатывание аварийного отключения при повышении потребляемой мощности в допустимых пределах.

По закону Ома можно рассчитать ток как отношение напряжения между двумя точками к сопротивлению этого участка цепи (сопротивление самого провода). Этот параметр у провода зависит от его материала, длины и сечения. При использовании стандартных материалов (алюминий или медь) единственным параметром, на который можно влиять остается сечение проводника. А он зависит от предполагаемого протекающего тока.

Сила тока в розетке на 220 В обычно не превышает 6 ампер. Это значит, что суммарная мощность подключенных к розетке электроприборов не должна превышать 1300 Вт. В противном случае требуется укладка особых проводов с увеличенным сечением.

Вычисление мощности

Формула мощности электрического тока и принцип расчета будут отличаться при рассмотрении цепей постоянного и переменного токов. Постоянный ток используется в бортовой сети автомобилей, портативных устройствах, питающем напряжении троллейбусов. Переменный — применяется в электрической проводке зданий, мощных электродвигателях и генераторах.

При постоянном напряжении

Чтобы предположить значение тока, нужно знать мощность используемых потребителей электроэнергии. Расчет тока по мощности производится из этой величины по формуле:

I = P / U,

где I — сила тока, U — напряжение в сети, P — суммарная мощность, которую будут потреблять подключенные устройства.

Для примера можно посчитать ток питания электродвигателя троллейбуса 150 кВт. В троллейбусной сети используется постоянное напряжение 600 В. Соответственно, при вычислении тока через указанную формулу, получается значение, равное 250 ампер. Для таких больших значений в троллейбусной сети используются специальные провода.

Существует специальные таблицы, позволяющие по известному току сразу найти сечение медного или алюминиевого проводника. Это же значение можно вычислить в калькуляторе онлайн. Необходимо ввести используемый материал, ток или мощность потребителя — и сервис рассчитает оптимальное сечение. В стандартных проводках зданий используются сечения 1,5 квадратных миллиметра для сетей освещения и 2,5 кв. мм. для розеток.

При переменном напряжении

Для питания электрических сетей домашних и офисных зданий используется переменное напряжение. Его применение обосновано несколькими причинами:

  1. Меньшие затраты при передаче по ЛЭП;
  2. Простое создание повышающих и понижающих напряжение устройств;
  3. Отсутствие полярности.

А для питания устройств постоянного тока применяются разного рода выпрямители.

Мощность переменного тока сильно зависит от параметров питаемой нагрузки. Поэтому формула электрической мощности в переменных сетях приобретает вид:

P = U ⋅ I ⋅ cosφ,

где cosφ определяет характер нагрузки.

В таких цепях это активная мощность, то есть превращающаяся при работе в другие виды энергии: электромагнитную и тепловую.

Для активного сопротивления, то есть обычных резисторов, cosφ = 1. Чем больше реактивная составляющая в цепи, то есть больше элементов имеют емкостное или индуктивное сопротивление, тем меньше будет cosφ. Коэффициент cosφ для большинства электроприборов имеет значение 0,95, исключение составляют только сварочные аппараты и электродвигатели, имеющие высокую индуктивную нагрузку.

Существует и реактивная мощность. Она определяет энергию, подаваемую с источника питания в реактивные элементы, а затем возвращаемая этими элементами обратно. Формула мощности тока для реактивных цепей имеет вид:

P = U ⋅ I ⋅ sinφ.

Здесь sinφ характеризует вклад в полную мощность индуктивных и конденсаторных элементов. Измеряется реактивная мощность в таких единицах, как вар (вольт-ампер реактивный).

В промышленных электросетях распространены трехфазные системы. Их преимущества важны для индустрии:

  • Более экономная передача электричества на дальние расстояния;
  • Уменьшение затрат при создании электродвигателей 3-х фазной системы;
  • Равномерность механической нагрузки на электрогенератор.

Особенностью трехфазных систем электрического тока является то, что напряжение в этих системах используется повышенное, равное 380 В. При распределенной по трем ветвям нагрузке это приводит к уменьшению рабочего тока по отношению к однофазной системе, в которой рабочим напряжением принято 220 В. Формула для расчета мощности в трехфазной цепи будет иметь следующий вид:

P = 1,73 ⋅ I ⋅ U ⋅ cosφ.

Повышающий коэффициент 1,73 здесь связан с распределённой нагрузкой и меньшим влиянием реактивной составляющей в таких системах.

Рассчитать значение переменного тока, зная потребляемую мощность, легко по указанным формулам. Например, для однофазной сети:

I = P /(U ⋅ cosφ).

Выбор электроприборов

Чтобы узнать, какой бытовой прибор подойдет для электропроводки дома, а для какого лучше использовать промышленную, нужно обратить внимание на его мощность. Этот параметр всегда написан в руководстве по эксплуатации или технических характеристиках устройства.

Стоит насторожиться, если мощность указана больше 1,5 кВт, так как для таких приборов нужно использовать увеличенное сечение проводов питающей сети. Обычно домашние электроприборы имеют меньшую мощность.

Исключение могут составить стиральные машины, электроплиты, некоторые виды пылесосов. Дома с электроплитами всегда имеют для них отдельную проводку, а для питания стиральной машины лучше протянуть отдельный провод увеличенного сечения.

Далее следует определиться с выбором автоматического выключателя для групп потребителей электротока. Его следует выбирать именно на группу, с целью экономии места в распределительном щитке, и чтобы быть более свободным в подключении приборов к разным розеткам. Какие группы лучше выбрать:

  • Электроплита;
  • Стиральная машина и водонагреватель;
  • Остальные розетки и освещение.

В домах с электроплитами наиболее высоким потреблением будет обладать именно плита. Ее мощность оценивается в 10 кВт, что при стандартном напряжении 220 В означает ток потребления 45 А, cosφ здесь равен 1. На электроплиту нужен отдельный автомат, поэтому здесь он выбирается его на 50 ампер.

Большим токопотреблением отличается также и стиральная машина. Стандартная стиралка потребляет 2,5 кВт, что соответствует 12,5 А. Несмотря на cosφ = 0,8 у электродвигателя стиральной машины, в ней большое количество электроники, поэтому для расчета берем cosφ = 1. Еще большая мощность у водонагревателя — до 8 кВт. Если предполагается использовать их одновременно со стиралкой — стоит брать автомат повышенного ампеража, так как суммарная мощность двух этих приборов составит 10,5 кВт, то есть нужен еще один автомат на 50 А. А лучше сделать два отдельных автомата: 40 А — на водонагреватель, и 15 А — на стиральную машину.

Остальные розетки и освещение можно определить в отдельную группу. Их общее энергопотребление оценивается в 1,5 кВт, то есть автомата на 10 А будет достаточно для третьей группы.

Приборы для измерения величин

Измерения электротехнических величин производятся специальными устройствами. Ток измеряется амперметром, напряжение — вольтметром, а мощность можно померить ваттметром, либо вычислить ее по формуле из значений первых двух значений.

С помощью онлайн-калькулятора можно вычислить не только ток при известной мощности потребителей, но и сечение нужных для электропроводки проводов.

Вычисление силы тока и параметров проводки по мощности потребителей электроэнергии — очень важная часть проектирования здания или квартиры, поэтому нужно подойти к этому взвешенно и ответственно.

Расчет электрической мощности

Добавлено 1 октября 2020 в 09:01

Сохранить или поделиться

Формула расчета мощности

Мы видели формулу для определения мощности в электрической цепи: умножая напряжение в «вольтах» на ток в «амперах», мы получаем ответ в «ваттах». Давайте применим ее на примере схемы:

Рисунок 1 – Пример электрической схемы

Как использовать закон Ома для определения силы тока

В приведенной выше схеме мы знаем, что у нас напряжение батареи 18 В и сопротивление лампы 3 Ом. Используя закон Ома для определения силы тока, мы получаем:

\[I = \frac{E}{R} = \frac{18 \ В}{3 \ Ом} = 6 \ А\]

Теперь, когда мы знаем силу тока, мы можем взять это значение и умножить его на напряжение, чтобы определить мощность:

\[P = IE = (6 \ А)(18\ В) = 108 \ Вт\]

Это говорит нам о том, что лампа рассеивает (выделяет) 108 Вт мощности, скорее всего, в виде света и тепла.

Увеличение напряжения батареи

Давайте попробуем взять ту же схему и увеличить напряжение батареи, чтобы посмотреть, что произойдет. Интуиция подсказывает нам, что с увеличением напряжения ток в цепи будет увеличиваться, а сопротивление лампы останется прежним. Таким же образом, увеличится и мощность:

Рисунок 2 – Пример электрической схемы

Теперь напряжение аккумулятора составляет 36 вольт вместо 18 вольт. Лампа по-прежнему обеспечивает для прохождения тока электрическое сопротивление 3 Ом. Теперь сила тока равна:

\[I = \frac{E}{R} = \frac{36 \ В}{3 \ Ом} = 12 \ А\]

Это понятно: если I = E/R, и мы удваиваем E, а R остается прежним, сила тока тоже должна удвоиться.2R\]

Резюме

  • Мощность измеряется в ваттах, которые обозначается как «Вт».
  • Закон Джоуля: P = I2R; P = IE; P = E2/R

Оригинал статьи:

Теги

Закон ДжоуляЗакон ОмаМощностьОбучениеРассеиваемая мощностьСхемотехникаЭлектрический токЭлектрическое напряжениеЭлектричество

Сохранить или поделиться

Как найти мощность, зная силу тока, напряжение и сопротивление

В физике достаточно много внимания уделено энергии и мощности устройств, веществ или тел. В электротехнике эти понятия играют не менее важную роль чем в других разделах физики, ведь от них зависит насколько быстро установка выполнит свою работу и какую нагрузку понесут линии электропередач. Исходя из этих сведений подбираются трансформаторы для подстанций, генераторы для электростанций и сечение проводников передающих линий. В этой статье мы расскажем, как найти мощность электрического прибора или установки, зная силу тока, напряжение и сопротивление.

Определение

Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:

P=dA/dt

Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.

Электрическая мощность равна произведению тока на напряжение или:

P=UI

Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.

Формулы для расчётов цепи постоянного тока

Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:

P=UI

Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:

P=U2/R

Также можно выполнить расчет, зная ток и сопротивление:

P=I2*R

Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.

Для переменного тока

Однако для электрической цепи переменного тока нужно учитывать полную, активную и реактивную, а также коэффициент мощности (соsФ). Подробнее все эти понятия мы рассматривали в этой статье: https://samelectrik.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.

Отметим лишь, что чтобы найти полную мощность в однофазной сети по току и напряжению нужно их перемножить:

S=UI

Результат получится в вольт-амперах, чтобы определить активную мощность (ватты), нужно S умножить на коэффициент cosФ. Его можно найти в технической документации на устройство.

P=UIcosФ

Для определения реактивной мощности (вольт-амперы реактивные) вместо cosФ используют sinФ.

Q=UIsinФ

Или выразить из этого выражения:

И отсюда вычислить искомую величину.

Найти мощность в трёхфазной сети также несложно, для определения S (полной) воспользуйтесь формулой расчета по току и фазному напряжению:

S=3UфIф

А зная Uлинейное:

S=1,73*UлIл

1,73 или корень из 3 – эта величина используется для расчётов трёхфазных цепей.

Тогда по аналогии чтобы найти P активную:

P=3UфIф*cosФ=1,73*UлIл*cosФ

Определить реактивную мощность можно:

Q=3UфIф*sinФ=1,73*UлIл*sinФ

На этом теоретические сведения заканчиваются и мы перейдём к практике.

Пример расчёта полной мощности для электродвигателя

Мощность у электродвигателей бывает полезная или механическая на валу и электрическая. Они отличаются на величину коэффициента полезного действия (КПД), эта информация обычно указана на шильдике электродвигателя.

Отсюда берём данные для расчета подключения в треугольник на Uлинейное 380 Вольт:

  1. Pна валу=160 кВт = 160000 Вт
  2. n=0,94
  3. cosФ=0,9
  4. U=380

Тогда найти активную электрическую мощность можно по формуле:

P=Pна валу/n=160000/0,94=170213 Вт

Теперь можно найти S:

S=P/cosφ=170213/0,9=189126 Вт

Именно её нужно найти и учитывать, подбирая кабель или трансформатор для электродвигателя. На этом расчёты окончены.

Расчет для параллельного и последовательного подключения

При расчете схемы электронного устройства часто нужно найти мощность, которая выделяется на отдельном элементе. Тогда нужно определить, какое напряжение падает на нём, если речь идёт о последовательном подключении, или какая сила тока протекает при параллельном включении, рассмотрим конкретные случаи.

Здесь Iобщий равен:

I=U/(R1+R2)=12/(10+10)=12/20=0,6

Общая мощность:

P=UI=12*0,6=7,2 Ватт

На каждом резисторе R1 и R2, так как их сопротивление одинаково, напряжение падает по:

U=IR=0,6*10=6 Вольт

И выделяется по:

Pна резисторе=UI=6*0,6=3,6 Ватта

Тогда при параллельном подключении в такой схеме:

Сначала ищем I в каждой ветви:

I1=U/R1=12/1=12 Ампер

I2=U/R2=12/2=6 Ампер

И выделяется на каждом по:

PR1=12*6=72 Ватта

PR2=12*12=144 Ватта

Выделяется всего:

P=UI=12*(6+12)=216 Ватт

Или через общее сопротивление, тогда:

Rобщее=(R1*R2)/( R1+R2)=(1*2)/(1+2)=2/3=0,66 Ом

I=12/0,66=18 Ампер

P=12*18=216 Ватт

Все расчёты совпали, значит найденные значения верны.

Заключение

Как вы могли убедиться найти мощность цепи или её участка совсем несложно, неважно речь идёт о постоянке или переменке. Важнее правильно определить общее сопротивление, ток и напряжение. Кстати этих знаний уже достаточно для правильного определения параметров схемы и подбора элементов – на сколько ватт подбирать резисторы, сечения кабелей и трансформаторов. Также будьте внимательны при расчёте S полной при вычислении подкоренного выражения. Стоит добавить лишь то, что при оплате счетов за коммунальные услуги мы оплачиваем за киловатт-часы или кВт/ч, они равняются количеству мощности, потребленной за промежуток времени. Например, если вы подключили 2 киловаттный обогреватель на пол часа, то счётчик намотает 1 кВт/ч, а за час – 2 кВт/ч и так далее по аналогии.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Также читают:

Калькулятор закона

Ома — рассчитайте мощность, сопротивление, напряжение или ток. Колесо формул закона Ома.

Используйте этот калькулятор закона Ома, чтобы легко вычислить мощность, сопротивление, напряжение или электрический ток на основе двух известных параметров. Введите любые два параметра для расчета двух других . Поддерживает усилители, милиамперы, ватты, киловатты, мегаватты, вольты, милливольты и киловольты, омы, килоомы и мегаомы. Формулы, уравнения и колесо закона Ома для справки.

Использование калькулятора закона Ома

Используя вышеуказанный многоцелевой калькулятор закона Ом , вы можете:

  • Рассчитайте мощность и сопротивление с учетом напряжения и тока
  • Вычислить мощность и ток с учетом напряжения и сопротивления
  • Вычислить мощность и напряжение с учетом силы тока и сопротивления
  • Вычислить тока и сопротивления с учетом напряжения и мощности
  • Вычислить тока и напряжения с учетом мощности и сопротивления
  • Вычислить напряжение и сопротивление с учетом мощности и тока

Просто введите две известные величины, описывающие электрический ток, и две другие будут рассчитываться на их основе.Результат будет отображаться в выбранных метриках с поддерживаемыми метриками: амперы, миллиамперы, милливатты, ватты, киловатты, мегаватты, гигаватты, милливольты, вольты, киловольты, мегавольты, омы, килоомы и мегаомы. (А, мА, мВт, Вт, кВт, МВт, ГВт, мВ, В, КВ, МВ, Ом, КОм и МОм).

С помощью этого инструмента вы можете легко вычислить омы в ватты, омы в вольты, омы в амперы, вольт в омы, ватты в омы, амперы в омы и так далее.

Закон и формула Омха

Закон

Ома гласит, что ток между любыми двумя точками электрического проводника прямо пропорционален напряжению в этих двух точках.Математически взаимосвязь описывается уравнениями:

, где I — ток в амперах, В, — напряжение в вольтах, а R — сопротивление в Ом (Ом). Эти три являются эквивалентными преобразованиями формулы закона Ома и используются при анализе цепей и планировании электрических сетей.

Закон

Ома применим для электрических цепей, содержащих только резистивные элементы (конденсаторы и катушки индуктивности не допускаются), и он работает одинаково для постоянного (DC) или изменяющегося во времени (AC) управляющего напряжения или тока.

Для расчета электрической мощности , которая представляет собой скорость, с которой электрическая энергия передается через проводник в единицу времени, нам нужно знать, что P = V x I (из закона Джоуля), где P — мощность в ваттах. , V и I согласно приведенным выше определениям. Это основное уравнение можно преобразовать в различные формулы в зависимости от известных электрических измерений и того, как работает наш калькулятор Ом.

Колесо закона Ома

Когда вы комбинируете формулы, вы получаете колесо формул закона Ома, показанное ниже, которое отражает принцип работы нашего калькулятора.Колесо закона Ома представляет все возможные отношения между мощностью (P), сопротивлением (R), током (I) и напряжением (V).

Чтобы использовать колесо, выберите нужную величину из внутреннего круга колеса, а затем соответствующую формулу в этом квадранте на основе того, что вы знаете об электрическом токе, с которым вы работаете. Несмотря на то, что использование калькулятора более удобно, схематическое изображение, указанное выше, упрощает понимание основных формул и уравнений, а также их взаимосвязей.

Артикулы:

[1] Роберт А.М., епископ Э.С. (1917) «Элементы электричества» Американское техническое общество с.54

Калькулятор емкости, C-рейтинга, силы тока, заряда и разряда батареи или блока батарей (накопитель энергии)

Калькулятор батарей

Введите собственные значения в белые поля, результаты отображаются в зеленых полях.


Принцип и определения

Емкость и энергия аккумулятора или системы хранения

Емкость батареи или аккумулятора — это количество энергии, запасенной в соответствии с определенной температурой, значением тока заряда и разряда и временем заряда или разряда.

Номинальная мощность и коэффициент C

C-rate используется для масштабирования тока заряда и разряда батареи. Для заданной емкости C-rate — это мера, указывающая, при каком токе батарея заряжается и разряжается для достижения определенной емкости.
Заряд 1C (или C / 1) загружает аккумулятор, который рассчитан, например, на 1000 Ач при 1000 А в течение одного часа, поэтому в конце часа аккумулятор достигает емкости 1000 Ач; разряд 1C (или C / 1) разряжает аккумулятор с такой же скоростью.
Заряд 0,5 ° C или (C / 2) нагружает аккумулятор, который рассчитан, например, на 1000 Ач при 500 А, поэтому для зарядки аккумулятора номинальной емкостью 1000 Ач требуется два часа;
При зарядке 2C заряжается аккумулятор, рассчитанный, скажем, на 1000 Ач при 2000 А, поэтому теоретически для зарядки аккумулятора номинальной емкостью 1000 Ач требуется 30 минут;
Номинал Ач обычно указывается на батарее.

Последний пример, свинцово-кислотный аккумулятор с номинальной емкостью C10 (или C / 10) 3000 Ач должен заряжаться или разряжаться за 10 часов с ток заряда или разряда 300 А.

Почему важно знать C-rate или C-рейтинг батареи

C-rate — важные данные для аккумулятора, поскольку для большинства аккумуляторов запасенная или доступная энергия зависит от скорости тока заряда или разряда. В общем-то, для данной емкости у вас будет меньше энергии, если вы разряжаете в течение одного часа, чем если вы разряжаете в течение 20 часов, и наоборот, вы будете хранить меньше энергии в батарее при токовом заряде 100 А в течение 1 ч, чем при токовом заряде 10 А в течение 10 ч.

Формула для расчета тока на выходе аккумуляторной системы

Как рассчитать выходной ток, мощность и энергию батареи согласно C-rate?
Самая простая формула:

I = Cr * Er
или
Cr = I / Er
Где
Er = номинальная запасенная энергия в Ач (номинальная емкость аккумулятора указана производителем)
I = ток заряда или разряда в амперах (A)
Cr = C-коэффициент батареи
Уравнение для получения времени заряда или заряда или разряда «t» в зависимости от тока и номинальной емкости:
т = Er / I
t = время, продолжительность заряда или разряда (время работы) в часах
Связь между Cr и t:
Cr = 1 / т
т = 1 / Cr




Калькулятор закона Ом

Укажите любые 2 значения и нажмите «Рассчитать», чтобы получить другие значения в уравнениях закона Ома V = I × R и P = V × I.

Связано: счетчик резисторов

Закон Ома

Закон

Ома гласит, что ток через проводник между двумя точками прямо пропорционален напряжению. Это верно для многих материалов в широком диапазоне напряжений и токов, а сопротивление и проводимость электронных компонентов, изготовленных из этих материалов, остаются постоянными. Закон Ома верен для цепей, которые содержат только резистивные элементы (без конденсаторов или катушек индуктивности), независимо от того, является ли управляющее напряжение или ток постоянным (DC) или изменяющимся во времени (AC).Его можно выразить с помощью ряда уравнений, обычно всех трех вместе, как показано ниже.

Где:

В — напряжение в вольтах
R — сопротивление в Ом
I ток в амперах

Электроэнергетика

Мощность — это скорость, с которой электрическая энергия передается по электрической цепи за единицу времени, обычно выражается в ваттах в Международной системе единиц (СИ). Электроэнергия обычно вырабатывается электрическими генераторами и поставляется предприятиям и домам через электроэнергетику, но также может поступать от электрических батарей или других источников.

В резистивных цепях закон Джоуля можно объединить с законом Ома для получения альтернативных выражений для количества рассеиваемой мощности, как показано ниже.

Где:

P — мощность в ваттах

Колесо формулы закона Ома

Ниже приведено колесо формул для соотношений по закону Ома между P, I, V и R. Это, по сути, то, что делает калькулятор, и просто представление алгебраической манипуляции с уравнениями выше. Чтобы использовать колесо, выберите переменную для поиска в середине колеса, а затем используйте соотношение для двух известных переменных в поперечном сечении круга.

3-фазное питание, значения напряжения и тока

Трехфазное соединение по схеме треугольник: линия, фазный ток, напряжения и мощность в Δ конфигурации

Что такое соединение по схеме треугольник (Δ)?

Delta или Mesh Connection ( Δ ) Система также известна как Трехфазная трехпроводная система ( 3-фазная 3-проводная ), и это наиболее предпочтительная система для передачи электроэнергии переменного тока при распределении, Обычно используется соединение звездой.

В системе соединения Delta (также обозначаемой как Δ ) начальные концы трех фаз или катушек соединены с конечными концами катушки. Или начальный конец первой катушки соединен с конечным концом второй катушки и так далее (для всех трех катушек), и это выглядит как замкнутая сетка или цепь, как показано на рис. (1).

Проще говоря, все три катушки соединены последовательно, образуя тесную сеть или цепь. От трех переходов вынуты три провода, и все токи, исходящие от перехода, считаются положительными.

В соединении треугольником соединение трех обмоток выглядит как короткое замыкание, но это не так, , если система сбалансирована, тогда значение алгебраической суммы всех напряжений вокруг сетки равно нулю в соединении треугольником .

Когда клемма разомкнута в Δ, то нет возможности протекать токи с базовой частотой вокруг замкнутой ячейки.

Также прочтите:

На заметку: В конфигурации треугольником, в любой момент, значение ЭДС одной фазы равно равнодействующей значений ЭДС двух других фаз, но в противоположном направлении.

Рис (1). Трехфазная мощность, значения напряжения и тока при соединении треугольником (Δ)

Значения напряжения, тока и мощности при соединении треугольником (Δ)

Теперь мы найдем значения линейного тока, линейного напряжения, фазного тока, фазных напряжений и Питание в трехфазной системе переменного тока треугольником.

Линейные напряжения (V L ) и фазные напряжения (V Ph ) при соединении треугольником

На рис.2 видно, что между двумя клеммами имеется только одна фазная обмотка (т.е.е. между двумя проводами имеется одна фазная обмотка). Следовательно, в Delta Connection, напряжение между (любой парой) двух линий равно фазному напряжению фазной обмотки , которая подключена между двумя линиями.

Поскольку последовательность фаз — R → Y → B, направление напряжения от фазы R к фазе Y положительное (+), а напряжение фазы R опережает напряжение фазы Y на 120 °. Аналогично, напряжение фазы Y опережает фазное напряжение B на 120 °, а его направление положительно от Y к B.

Если линейное напряжение между;

  • Линия 1 и Линия 2 = V RY
  • Линия 2 и Линия 3 = V YB
  • Строка 3 и Линия 1 = V BR

Тогда мы видим, что V RY ведет V YB на 120 ° и V YB отводы V BR на 120 ° .

Предположим,

V RY = V YB = V BR = V L …………… (напряжение сети)

Тогда

V L = V PH

И.е. при соединении треугольником, линейное напряжение равно фазному напряжению .

Линейные токи (I L ) и фазные токи (I Ph ) при соединении треугольником

Как видно из рисунка 2, общий ток каждой линии равен разность векторов между двумя фазными токами в соединении треугольником , протекающем по этой линии. т.е.

  • Ток в линии 1 = I 1 = I R — I B
  • Ток в линии 2 = I 2 = I Y — I R
  • Ток в линии 3 = I 3 = I B — I

Что такое падение напряжения? Расширенный калькулятор падения напряжения

Последние новости
  • Скидка до 93% — открытие официального магазина электротехники — Купить сейчас!
  • Скидка 25% на рубашки для электротехники.Ограниченная серия … Забронируйте сейчас
  • Получите бесплатное приложение для Android | Загрузите приложение «Электрические технологии» прямо сейчас!
  • ОФИЦИАЛЬНЫЙ МАГАЗИН
  • НАПИСАТЬ ДЛЯ ET
  • РЕКЛАМА
  • ПОЛИТИКА КОНФИДЕНЦИАЛЬНОСТИ
  • СВЯЗАТЬСЯ С НАМИ
  • Главная
  • РУКОВОДСТВО
  • ЭЛЕКТРИЧЕСКАЯ ПРОВОДКА
    • Главная Электропроводка
    • 3 Новый Электропроводка 3 Новый
    • Электропроводка и установка панели солнечных батарей
    • Схемы подключения батарей
    • 1-фазная и 3-фазная проводка
    • Электропроводка и управление Trending
  • EE ESSENTIALS
    • EE How To Exclusive
    • EE Calculators 16 Trending
    • EE Projects
    • EE Q & A Hot
    • EE MCQs New
    • EE Notes & Articles
    • Анализ электрических цепей
    • EE Symbols New
  • BASIC
    • Basic Concepts
    • Basic Electrical Основы
    • Базовая электроника
    • Электрические формулы и уравнения
    • Монтаж электропроводки
    • Основы переменного тока
    • Переменный ток
    • MCQ с пояснительными ответами
    • EE Вопросы / ответы
  • МАШИНЫ
    • Все
    • Генератор
    • Батареи
    • Двигатели
    • Трансформатор
  • POWER
    • Power System
    • Коэффициент мощности
    • Воздушные линии
    • Защита
    • Возобновляемая и экологически чистая энергия
    • Система солнечных панелей
  • CONTROL
    • Устранение неисправностей
    • Как сделать
    • Защита
    • Ремонт
    • Электропитание и управление двигателем
    • EE-Tools, инструменты, устройства, компоненты и измерения
  • ЭЛЕКТРОНИКА
    • Все
    • Базовая электроника
    • Семейства булевой алгебры и логики
    • Combinational Di gital Circuits
    • Цифровая электроника
    • Логические ворота
    • Последовательные логические схемы
    • Сигналы
  • Еще
    • АНАЛИЗ ЦЕПЕЙ
      • Цепи постоянного тока
      • Однофазные цепи переменного тока
      • Трехфазные электронные схемы переменного тока
      • Электрические / Программное обеспечение
      • Электрические / электронные символы
      • EE Calculators
    • Resistors
      • Capacitors
      • Inductance & Magnetism
      • Electric / Electronics Symbols
      • Electrical Design
    • Light Emitting Diode
      • Fun With LEDs
      • Renewable & Зеленая энергия
      • Электроэнергия
      • Освещение
  • Искать
  • Переключить скин
  • Меню

ЭЛЕКТРИЧЕСКИЕ ТЕХНОЛОГИИ

  • Искать
  • Скин переключателя
На главную > Калькуляторы EE > Что такое падение напряжения? Усовершенствованный калькулятор падения напряжения с решенными примерами. Калькуляторы EE. Вопросы / ответы. Вопросы и ответы. Анализ электрических цепей. Приложение и программное обеспечение для электрических / электронных устройств. Электрические конструкции. Формулы и уравнения для электрических технологий.

13 6 минут на чтение

Расширенный калькулятор падения напряжения с решенными примерами и формулами

Содержание

  • Что такое допустимое падение напряжения?

Знать все о расчете коэффициента мощности и формуле

Коэффициент мощности является важным фактором для оценки эффективности использования электроэнергии в сети энергосистемы.Если коэффициент мощности хороший или высокий (единица), то можно сказать, что электроэнергия используется в энергосистеме более эффективно. Поскольку коэффициент мощности низкий или уменьшается, эффективность использования электроэнергии в энергосистеме снижается. Слабый коэффициент мощности или снижение коэффициента мощности вызвано разными причинами. Итак, для улучшения коэффициента мощности существуют различные методы коррекции коэффициента мощности. Коррекция коэффициента мощности с использованием конденсаторов коррекции коэффициента мощности — лучший и эффективный метод из различных методов коррекции коэффициента мощности.Но в первую очередь мы должны знать, что такое коэффициент мощности, расчет коэффициента мощности и коррекция коэффициента мощности.

Что такое коэффициент мощности?

Коэффициент мощности можно описать различными терминами, например, его можно назвать отношением между активной мощностью и полной мощностью, его можно определить как косинус угла между напряжением и током. Учитывается косинус угла между напряжением и током (а не синус, тангенс или котангенс угла), потому что рассматривается векторная диаграмма напряжения или тока из треугольника мощности.


Расчет коэффициента мощности

Мы обсуждали, что эффективность энергосистемы зависит от коэффициента мощности, и для повышения эффективного использования мощности в энергосистеме необходимо повысить коэффициент мощности. Но перед этим мы должны знать коэффициент мощности энергосистемы, то есть мы должны знать расчет коэффициента мощности. Расчет коэффициента мощности можно получить, используя угол между напряжением питания и током нагрузки, как показано на рисунке.

Угол между напряжением питания и током нагрузки

Коэффициент мощности всегда находится в пределах от -1 до +1.Расчет коэффициента мощности можно выполнить с помощью треугольника мощности, косинус угла между активной мощностью и полной мощностью рассматривается как коэффициент мощности и совпадает с углом между напряжением питания и током нагрузки.

Угол между активной мощностью и полной мощностью

Итак, если угол между напряжением питания и током нагрузки или угол между активной и полной мощностью уменьшается, то косинус этого угла увеличивается, что делает коэффициент мощности почти равным единице. Это указывает на эффективность использования электроэнергии в энергосистеме.Фактически, единичный коэффициент мощности практически невозможен из-за емкостной и индуктивной нагрузок, которые вызывают опережение или запаздывание. Таким образом, для повышения коэффициента мощности с целью эффективного использования электроэнергии существуют различные методы коррекции коэффициента мощности.

Ранее в этой статье мы обсуждали, что расчет коэффициента мощности может быть выполнен с использованием угла между напряжением питания и током нагрузки или угла между активной мощностью и полной мощностью. Если рассматривать уравнение мощности, то расчет коэффициента мощности можно произвести следующим образом.

В следующих уравнениях, S-полная мощность, Q-реактивная мощность и P-активная мощность. Треугольник власти, образованный этими силами, показан на рисунке.

Коэффициент мощности и треугольник мощности

Активная мощность, которая используется для питания нагрузок, называется активной мощностью (P) и задается как

Активная мощность

Полная мощность (S) — это мгновенная величина колеблющегося компонента мощности, измеренная в ВА или кВА и это может быть выражено следующим образом.

Полная мощность

Реактивная мощность и энергия, запасенные в энергосистеме, пропорциональны друг другу и измеряются в ВАр или кВАр.Теперь расчет коэффициента мощности можно выразить как

Коэффициент мощности

Коэффициент мощности (PF) также называется коэффициентом мощности смещения (DPF).

Расчет однофазного коэффициента мощности и трехфазный коэффициент мощности могут быть даны, как показано ниже, которые вычитаются из уравнений расчета однофазной и трехфазной мощности.

Коэффициент мощности для одной фазы задается как

Расчет коэффициента мощности для одной фазы

Где мощность-кВт, напряжение-вольт и ток-ампер.

Три коэффициента мощности, полученные из расчета трехфазной мощности

Расчет трехфазного коэффициента мощности (линейное напряжение)

Где мощность-кВт, линейное напряжение-вольт и ток-ампер.

Расчет трехфазного коэффициента мощности (напряжение между фазой и нейтралью)

Где мощность в кВт, напряжение между фазой в вольтах и ​​ток в амперах.

Коррекция коэффициента мощности

После расчета коэффициента мощности, если он хороший, считается, что электроэнергия эффективно используется в энергосистеме.Но если расчет коэффициента мощности дает плохой коэффициент мощности, то для повышения эффективности системы требуется коррекция коэффициента мощности. Существуют различные причины, такие как индукционные нагрузки (индукционные генераторы, асинхронные двигатели, газоразрядные лампы высокой интенсивности и т. Д.), Из-за которых влияет коэффициент мощности.

Таким образом, коррекция коэффициента мощности улучшит уровни напряжения в энергосистеме, снизит потери, которые увеличат пропускную способность системы, устранит штраф за коэффициент мощности, снизит потребность в пиковой активной мощности, тем самым уменьшив плату за коммунальные услуги.Существуют различные методы коррекции коэффициента мощности (уменьшение угла между напряжением питания и током нагрузки, тем самым увеличивая значение коэффициента мощности до единицы), такие как коррекция коэффициента мощности с использованием конденсаторов коррекции коэффициента мощности, синхронная коррекция коэффициента мощности, фильтрация и активная коррекция коэффициента мощности в режиме повышения.

Повышение коэффициента мощности с использованием конденсаторов коррекции коэффициента мощности
Конденсаторы коррекции коэффициента мощности

Коэффициент мощности может быть улучшен с помощью конденсаторов коррекции коэффициента мощности, используя свойство конденсаторов i.е., ведущий коэффициент мощности, который может уменьшить влияние на коэффициент мощности индуктивных нагрузок. Потому что индуктивное реактивное сопротивление индуктивной нагрузки может быть уменьшено с помощью емкостного реактивного сопротивления конденсаторов коррекции коэффициента мощности. Существуют различные типы конденсаторов коррекции коэффициента мощности, такие как конденсаторы коррекции коэффициента мощности ABB, конденсаторы коррекции коэффициента мощности с фиксированным коэффициентом мощности и конденсаторы автоматической коррекции коэффициента мощности, которые обычно используются для коррекции коэффициента мощности.

В этой статье мы обсуждали расчет коэффициента мощности, но знаете ли вы, как рассчитать сопротивление, используя цветовую кодировку резистора? Знаете ли вы об онлайн-калькуляторе резисторов и калькуляторе закона Ома?

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *