Формула напряжения электрического: Формула напряжения тока. Как найти, вычислить электрическое напряжение.

Содержание

Формула напряжения тока. Как найти, вычислить электрическое напряжение.

 

 

 

Тема: как рассчитать величину напряжения зная ток, сопротивление, мощность.

 

Как известно у электрического напряжения должна быть своя мера, которая изначально соответствует той величине, что рассчитана для питания того или иного электротехнического устройства. Превышение или снижение величины этого напряжения питания негативно влияет на электрическую технику, вплоть до полного выхода ее из строя. А что такое напряжение? Это разность электрических потенциалов. То есть, если для простоты понимания его сравнить с водой, то это примерно будет соответствовать давлению. По научному электрическое напряжение — это физическая величина, показывающая, какую работу совершает на данном участке ток при перемещении по этому участку единичного заряда.

 

Наиболее распространенной формулой напряжения тока является та, в которой имеются три основные электрические величины, а именно это само напряжение, ток и сопротивление. Ну, а формула эта известна под названием закона Ома (нахождение электрического напряжения, разности потенциалов).

 

 

Звучит эта формула следующим образом — электрическое напряжение равно произведению силы тока на сопротивление. Напомню, в электротехнике для различных физических величин существуют свои единицы измерения. Единицей измерения напряжения является «Вольт» (в честь ученого Алессандро Вольта, который открыл это явление). Единица измерения силы тока — «Ампер», и сопротивления — «Ом». В итоге мы имеем — электрическое напряжение в 1 вольт будет равно 1 ампер умноженный на 1 ом.

 

 

 

 

Помимо этого второй наиболее используемой формулой напряжения тока является та, в которой это самое напряжение можно найти зная электрическую мощность и силу тока.

 

 

Звучит эта формула следующим образом — электрическое напряжение равно отношению мощности к силе тока (чтобы найти напряжение нужно мощность разделить на ток).

Сама же мощность находится путем перемножения тока на напряжение. Ну, и чтобы найти силу тока нужно мощность разделить на напряжение. Все предельно просто. Единицей измерения электрической мощности является «Ватт». Следовательно 1 вольт будет равен 1 ватт деленный на 1 ампер.

 

Ну, а теперь приведу более научную формулу электрического напряжения, которая содержит в себе «работу» и «заряды».

 

 

В этой формуле показывается отношение совершаемой работы по перемещению электрического заряда. На практике же данная формула вам вряд ли понадобится. Наиболее встречаемой будет та, которая содержит в себе ток, сопротивление и мощность (то есть первые две формулы). Но, хочу предупредить, что она будет верна лишь для случая применения активных сопротивлений. То есть, когда расчеты производятся для электрической цепи, у которой имеется сопротивления в виде обычных резисторов, нагревателей (со спиралью нихрома), лампочек накаливания и так далее, то приведенная формула будет работать.

В случае использования реактивного сопротивления (наличии в цепи индуктивности или емкости) нужна будет другая формула напряжения тока, которая учитывает также частоту напряжения, индуктивность, емкость.

 

P.S. Формула закона Ома является фундаментальной, и именно по ней всегда можно найти одну неизвестную величину из двух известных (ток, напряжение, сопротивление). На практике закон ома будет применяться очень часто, так что его просто необходимо знать наизусть каждому электрику и электронику.

 

Разница между Током и Напряжением

Главное различие между Током и Напряжением состоит в том, что Ток — это скорость потока зарядов (электронов) между двумя точками, вызванная напряжением, тогда как Напряжение — это разность потенциалов между двумя точками в электрическом поле, которая вызывает ток в цепи.

Ток и напряжение — это два разных электрических понятия, но они связаны друг с другом. Важно знать основы напряжения и тока для электротехники и электроники, а также все, что связано с электричеством.

Содержание
  1. Обзор и основные отличия
  2. Что такое Ток
  3. Что такое Напряжение
  4. Различные схемы подключения
  5. В чем разница между Током и Напряжением
  6. Заключение
Что такое Ток?

Ток — это скорость потока заряда (электронов), проходящего через точку в цепи, вызванную напряжением. Ток обозначается символом “I”.  Единицей измерения тока является ампер, который обозначается буквой «А». Величина тока в один ампер соответствует заряду в один кулон проходящему за одну секунду. Ток величиной в 1 Ампер (1А) является носителем заряда 6,24 × 10 

18 электронов. Электрический ток течет в противоположном направлении движения электронов, т.е. от анода к катоду. Кроме того, при возникновении электрического тока всегда создаётся магнитное поле. Причём, чем больше ток, тем магнитное поле будет более интенсивным .

Направление движения тока в цепи

Основными видами тока являются переменный и постоянный. Переменный ток (AC) меняет свое направление и величину в течение времени. Постоянный ток (DC) имеет постоянную величину, которая не меняет свою полярность или направление в течение времени.

Основная электрическая формула для тока: I = Q/t , где  I — ток в амперах, Q — заряд в кулонах, t — время в секундах

Ток в цепях постоянного тока можно рассчитать по закону ома:  I = U/R, где  I — ток в амперах, U — напряжение в вольтах, R — сопротивление в омах

Что такое Напряжение?

Необходимое количество энергии для перемещения единицы заряда из одной точки в другую называется напряжением. Другими словами, напряжение — это разность потенциалов между двумя точками в электрическом поле, которая вызывает ток в цепи, т.е. напряжение является основной причиной, а ток — следствием из-за напряжения. Кроме того, при наличии напряжения создаётся электростатическое поле. Причём при увеличении напряжения между двумя точками, возникает более интенсивное электростатическое поле.  При увеличении расстояния между этими точками, соответственно интенсивность поля уменьшается.

При объяснении различие между напряжением и током используется общая аналогия с водяным баком

Наглядно, напряжение можно представить в виде силы, проталкивающей электроны в проводнике, и при большем напряжении эта проталкивающая способность увеличивается. Так как энергия выполняет работу, то данная потенциальная энергия является работой в джоулях по перемещению электронов, чем и является электрический ток, по электрической цепи. При этом, разница напряжения в между узлами электрической цепи будет называться как разность потенциалов, как правило она называется падение напряжения.

Напряжение является эффектом электродвижущей силы (ЭДС). Единицей измерения напряжения является «вольт», который обозначается как «В». Один вольт — это разность потенциалов, при которой совершается работа в один джоуль по перемещению заряда в один кулон между двумя точками.

Существует два основных типа напряжения: переменное напряжение и постоянное напряжение. Переменное напряжение постоянно меняет направление и величину.  Переменные напряжения могут генерироваться генераторами. Постоянное напряжение имеет постоянную величину, которая не меняет свою полярность в течение времени. Постоянное напряжение может генерироваться электрохимическими элементами, батареями и аккумуляторами.

Основная формула для напряжения U=A/Q , где U — напряжение в вольтах, A — работа по перемещению заряда в джоулях, Q — заряд в кулонах

Напряжение в цепях постоянного тока можно рассчитать по формулам U=I*R, где U — напряжение в вольтах, I — ток в амперах, R — сопротивление в омах

Различные схемы подключения

Последовательное подключение. При последовательной схеме подключения напряжения источников складываются. Ток на любом компоненте последовательной электрической цепи одинаковый.

Последовательное соединение

Пример. Батарея 2 В и батарея 6 В последовательно подключены к светодиоду и резистору, на всех компонентах будет ток одинаковый (15 мА), тогда как напряжения  на них будут отличаться (напряжение 5 В будет на резисторе и напряжение 3 В на будет на светодиоде). Суммарно напряжения на светодиоде и резисторе составят будут соответствовать напряжениям батареи 2 В и батареи 6 В: 2 В + 6 В = 5 В + 3 В.

Параллельное подключение. При параллельной схеме подключения компонентов их токи будут складываться. Причём напряжение на каждом компоненте схемы будет одинаковым.

Параллельное соединение

Пример. Если те же самые, батареи параллельно подключить к светодиоду и резистору, то светодиоде и резисторе напряжение будет одинаковое (8 В). А проходящий ток 40 мА разобьётся на две ветви 15 и 25 мА в зависимости от сопротивления компонентов.

В чем разница между Током и Напряжением
Напряжение Ток
Это разница электрического потенциала между двумя точками или энергия на единицу заряда Это скорость потока электрических зарядов в цепи в определенной точке
Единица СИ
Вольт (В) Ампер (А)
Измерительный инструмент
Вольтметр Амперметр
Взаимосвязь
Причина электрического тока Ток в результате напряжения
Формула для расчета
Напряжение = выполненая работа/заряд Ток = заряд/время
Потери
Из-за полного сопротивления Из-за пассивных элементов
Тип создаваемого поля
Электростатическое поле Электромагнитное поле
Существование
Может существовать без тока Не может существовать без напряжения
Типы
Переменное напряжение и постоянное напряжение Переменный ток и постоянный ток
Заключение

Напряжение и ток являются двумя основными аспектами электричества. Основное различие между током и напряжением заключается в том, что ток — это скорость потока электрических зарядов, а напряжение — это разница электрического потенциала между двумя точками.

Напряжение, ток и сопротивление в электротехнике

Для начала рассмотрим определения основных электрических величин, далее рассмотрим законы, связывающие эти величины между собой на основе формул и графических зависимостей. Так от простого к сложному и будет развиваться эта статья.

Первым делом следует отметить, что существуют цепи постоянного и переменного тока. Разница между ними в характере протекания электрических величин — в цепях переменного тока ток и напряжение с течением времени изменяются по определенному закону (например, синусоиде). В цепях же тока постоянного с течением времени значение остается константным.

И в первых и во вторых цепях основными величинами будут: ток, напряжение и сопротивление.

Электрический ток — упорядоченное движение заряженных частиц (электронов) через проводник (проводящую среду) от точки с большим потенциалом, к точке с меньшим потенциалом. Принято говорить, что ток течет от плюса к минусу в цепях постоянного тока. Измеряется в амперах, обозначается “i”.

Электрическое сопротивление характеризует способность ограничивать значение электрического тока. Измеряется в омах и обозначается r. Величина обратная сопротивлению — проводимость. В зависимости от величины сопротивления материалы классифицируются на: проводники, диэлектрики и изоляторы.

Электрическое напряжение равняется разности потенциалов между двумя точками. U=f1-f2. Логично, что напряжение может быть и положительной и отрицательной величиной. Единица измерения вольт (В).

Связь между этими величинами описывается законом Ома:

Значение тока в электрической цепи прямо пропорционально величине напряжения и обратно пропорционально сопротивлению. I=U/R — данная формула применима для цепи постоянного тока. Зная две величины, всегда найдем третью.

Для переменного тока формула приобретет вид I=U/Z, где Z — полное сопротивление цепи, которое состоит из активной, емкостной и индуктивной составляющих:

  • R — активное сопротивление (омическое)
  • XL — индуктивное сопротивление (присуще катушкам, обмоткам, статору ТГ) — препятствует протеканию тока
  • XC — емкостное сопротивление (конденсаторное, встречается у кабеля) — препятствует протеканию напряжения
  • Z — реактивное сопротивление (импеданс, полное сопротивление) состоит из двух составляющих: активной (R) и реактивной (X). А реактивное (X) уже состоит из индуктивного (XL) и емкостного (XC)

Графически соотношение между сопротивлениями можно отобразить в форме прямоугольного треугольника (векторное представление).

В цепях переменного тока значения тока и напряжения изменяются с течением времени, согласно определенному закону. Например, по синусоиде:

I=Im*sin(wt+f)

В данной формуле I — это мгновенное значение тока, Im — амплитудное значение.

Амплитудное — максимальное значение, амплитудное, которое принимает величина за период. В формулах выше это значения с индексом “m” — типа максимальное.

Мгновенное — значение величины в данный момент времени. Максимальное из мгновенных значений является амплитудным.

Действующее — такое значение переменного тока, при котором за период в резисторе выделилось бы столько тепла, сколько и в цепи постоянного тока. Именно эти значения показывают наши вольтметры, амперметры. Для синусоиды действующее равно 0,707 от амплитудного. 1/корень(2)=0,707.

Как расчитать шунт для амперметра

Как подключить амперметр?

В зависимости от преобладания определенного характера сопротивления, векторы тока и напряжения будут смещены относительно друг друга:

Чисто активное сопротивление — ток и напряжение совпадают по фазе.

Преобладает индуктивное — значит, как писалось выше, току пройти тяжелее и он отстает от напряжения.

Преобладает емкостная составляющая — ток уходит в отрыв, напряжение тормозится емкостью.

Также цепи переменного тока могут быть однофазными и трехфазными. В трехфазных цепях приняты обозначения фаз: фаза А (желтая, U), фаза B (зеленая, V) и фаза С (красная, W). Как недавно сказали на одном объекте железной дороги: фаза “А” идет на Минск. 🙂

Между собой фазы могут соединяться в различные схемы: звезда, треугольник, зигзаг и прочие более редкие.

Сохраните в закладки или поделитесь с друзьями

Самое популярное

основные понятия, нахождение через силу тока и сопротивление

При проектировании схем различных устройств радиолюбителю необходимо производить точные расчеты c помощью измерительных приборов и формул. В электротехнике используются формулы для вычислений величин электричества (формулы напряжения, сопротивления, силы тока и так далее).

Общие сведения об электрическом токе

Электрическим током является процесс движения заряженных частиц (свободных электронов), имеющий вектор направленности. Частицы перемещаются под действием напряженности электрического поля, имеющей векторное направление. Это поле совершает работу по перемещению этих частиц. Влияют на работу электрического поля сила тока, напряжение и сопротивление.

Физический смысл

Под физическим смыслом понимается работа тока на участке, соотносящаяся с величиной заряда. Положительный заряд перемещается из одной точки, обладающей одним потенциалом, в другую, причем потенциал в этой точке отличается от предыдущего. В результате этого и возникает разность потенциалов, именуемая напряжением или ЭДС (электродвижущей силой).

Для полного понимания этого физического процесса и выяснения физического смысла напряжения необходимо провести аналогию с трубой. Допустим, труба наполнена водой и к ней прикручен кран для слива воды. Эта труба также оборудована краном для заливания воды с помощью мощного насоса.

Для демонстрации аналогии нужно открыть кран полностью, вода начнет выливаться и можно сделать вывод о незначительном давлении. Во втором случае спускной кран открыт не полностью и происходит набор воды при помощи насоса. В трубе создается давление и напор усиливается. Насос, создающий давление, и является в этом примере напряженностью электрического поля.

Электричество, если его не контролировать и не знать о пагубном влиянии на организм человека, способно создать множество проблем начиная от сгорания приборов и пожаров, и заканчивая угрозой жизни и здоровью человека. Техника безопасности очень важна в любой сфере.

Пагубное влияние на человека

Электричество очень опасно и является причиной несчастных случаев. Радиолюбители подвержены риску поражения электрическим током довольно часто. Некоторые радиолюбители пробуют наличие напряжения пальцами и пренебрегают техникой безопасности. Большинство из них считает опасным для жизни напряжение от 500 В, а 110 и 220 — не наносящими вреда здоровью. Удары от маломощных источников тока (маломощный силовой трансформатор, конденсатор), по их мнению, являются неопасными.

Согласно технике безопасности при работах с электричеством, они ошибаются, но есть и другая сторона этого вопроса: организм каждого человека индивидуален, обладает разными параметрами. Из этого утверждения следует, что смертельные характеристики электричества (напряжение и ток) индивидуальны для каждого человека. Одних может ударить 36 В, а других не пробивает и 220 В.

Действие электричества на организм человека зависит от нескольких факторов: силы и частоты, времени и пути прохождения через организм, сопротивления организма или участка тела, по которому протекает ток.

Исследованиями ученых установлено, что величина смертельного тока, поражающего сердце, составляет более 100 мА. Токи от 50 мА до 100 мА вызывают потерю сознания при кратковременном касании к поверхности, которая проводит ток. Токи до 50 мА могут стать причиной травм, например, падения с лестницы, выпускания из рук токоведущего проводника и т. д.

Влияние на фактор поражения еще оказывает и сопротивление тела человека. Сопротивление для каждого индивида определить сложно и диапазон его составляет от 30 кОм до 200 кОм. Эта величина зависит от множества факторов: толщины кожи, влажности тела и окружающей среды, усталости, нервно-эмоционального состояния, болезни и других факторов. Сопротивление резко уменьшается при повышенной влажности воздуха и работе на влажных участках.

Формула расчета напряжения, опасного для жизни, предполагая, что Rч = 2кОм и I = 60 мА, выглядит так: U = I * R = 0,06 * 2000 = 120 В. В этой ситуации опасным напряжением можно считать 120 В и выше.

Частота тока является еще одной опасной характеристикой, обладающей поражающим действием. При увеличении частоты опасность уменьшается прямо пропорционально. Ток оказывает и тепловое действие, поэтому считать высокочастотные токи безопасными нельзя.

Травмы, происходящие из-за электричества, называются электротравмами. Каждая из них несет в себе меньшую или большую опасность. Наиболее опасными являются травмы, полученные от электрической дуги, которая обладает высокой температурой от 5 тыс. до 12 тыс. градусов по Цельсию. Виды электрических травм:

  1. Электрические ожоги происходят при тепловом воздействии на ткани организма человека, по которым течет ток.
  2. Обожженные участки на коже возникают при прямом контакте ее с токоведущей частью проводника. Пораженный участок приобретает серый или бледно-серый цвет.
  3. Металлизация кожи — пропитывание кожи частицами металла при коротком замыкании или сварке.
  4. Механические повреждения — самопроизвольная судорога мышц, приводящая к падению. При падении происходят переломы, ушибы вывихи суставов и т. д.
  5. Электроофтальмия — воспаление слизистой оболочки глаз при воздействии излучения электрической дуги.

Существует еще один вид поражения — электрический удар. Этот вид поражения можно условно разделить на 5 групп: без потери сознания; с потерей сознания, связанной с нарушением сердечной деятельности или без нее; клиническая смерть и электрический шок.

Единицы измерения

Работа электрического поля по перемещению заряда измеряется в Дж (Джоуль), заряд в Кл (кулон). Вот, как обозначается напряжение или его единица измерения: отношение этих величин (работа по перемещению в Дж к электрическому заряду в Кл) и является разностью потенциалов, измеряется в вольтах (В) и обозначается U. Разность потенциалов бывает:

  1. Переменной (амплитуда и полярность изменяются с течением времени, в зависимости от характерной частоты).
  2. Постоянной (имеет постоянное значение амплитуды и полярность есть величина постоянная).

А также у единиц измерения есть приставки, например, кВ (Киловольт = 1000В) и МВ (мегавольт = 1000000В). Существуют о совсем низкие значения, например, мВ (милливольт = 0,001В).

Цепи переменного и постоянного тока

В цепях постоянного и переменного тока U обладает различными свойствами и производит иные влияния на проводники. Для постоянного напряжения существуют законы по вычислению его характеристик, но для переменного способы вычисления показателей заметно отличаются. Разберем более подробно все различия и сходства.

Расчет и анализ цепей выполняется при помощи закона Ома: сила тока полной цепи прямо пропорциональна напряжению и обратно пропорциональна сумме сопротивлений цепи и источника питания.

Следствие из закона при условии пренебрежения внутренним сопротивлением источника электричества: сила тока участка цепи прямо пропорциональна ЭДС и обратно пропорциональна сопротивлению этого участка.

Запись закона Ома, из которого следует формула напряжения, тока и сопротивления: I = U / (Rц + Rвн), где I — сила тока, U — ЭДС, Rц — сопротивление цепи, Rвн — внутреннее сопротивление источника питания.

Формула силы тока через сопротивление и напряжение: I = U / Rц.

Формула напряжения электрического тока: U = I * Rц.

Для расчета мощности необходимо U умножить на I: P = U * I = U * U / R, где P — мощность.

Переменное однофазное напряжение

В цепях для переменного тока происходят совершенно другие явления и процессы, для них справедливы другие законы. Различают такие основные виды:

  1. Мгновенное (разность потенциалов в конкретный промежуток времени: u = u (t)).
  2. Амплитудное значение (максимальное значение мгновенного U в момент времени: u (t) = Uм * sin (wt + f), где w — угловая частота, t — конкретный момент времени и f — угол начальной фазы напряжения).
  3. Среднее значение (для синусоиды равно нулю).
  4. Среднеквадратичное — Uq (U за весь период колебаний и для синусоиды имеет вид: Uq = 0,707 * Uм).
  5. Средневыпрямленное — Uv (среднее значение модуля U: Um примерно равно 0,9 * Uq).

В цепях 3-фазного тока различают 2 вида напряжений: линейное (фаза-фаза) и фазное (фаза-ноль). При соединении в цепь «треугольником» фазное и линейное U равны. В случае соединения «звездой» — фазное в 1,732050808 раз меньше линейного.

Рекомендации по выбору прибора

Для расчетов необходимо измерять значения величин электричества. Существуют специальные приборы, которые помогают произвести точные расчеты. Для измерения разности потенциалов применяют вольтметр.

Вольтметр (вольт — единица измерения ЭДС, метр — измеряю) — прибор для измерения ЭДС в цепи, подключаемый параллельно участку, на котором необходимо провести замер.

Для конкретного случая необходимо применять тот или иной прибор. Для более точных расчетов приобретаются приборы с высоким классом точности. Классификация вольтметров:

  1. Принцип действия: электромеханические (стрелочные) и электронные.
  2. Назначение: постоянного и переменного тока, импульсные, селективные и универсальные.
  3. Конструктивное исполнение: щитовые, переносные и стационарные.

Аналоговый электромеханический вольтметр имеет большие погрешности измерений в высокоомных цепях, но отлично зарекомендовал себя в низкоомных цепях и возможностью модернизации (увеличение значений измерения U за счет добавочного резистора).

Выпрямительный вольтметр обладает более высоким классом точности. Состоит из самого измерительного прибора (обладает чувствительностью к постоянному току) и выпрямительного устройства. Они получили не очень широкое распространение из-за высоких погрешностей, и применяются в качестве сигнальных приборов (примерное значение U).

Цифровые вольтметры применяются в комбинированных приборах-мультиметрах. Поступающее напряжение на клеммы (измерительные щупы) прибора преобразовывается в сигнал при помощи аналого-цифрового преобразователя (АЦП). Происходит отображение на цифровом табло. Этот вид приборов получил широкое применение благодаря высокой точности и универсальности.

Импульсный вольтметр необходимо применять при измерении амплитуд импульсных сигналов и одиночных импульсов.

Основным применением фазочувствительных вольтметров является измерение квадратурных составляющих комплексного напряжения (наличие мнимой и действительной частей) первичной гармоники. Они, как правило, снабжены 2-мя индикаторами для выявления мнимой и действительной частей. Они получили широкое применение в измерении АФХ (амплитудно-фазовая характеристика) для подбора деталей и настройки усилителей.

Для измерения номинала постоянного напряжения используются вольтметры подгруппы В2 (вольтметры для постоянного напряжения), а также В7 (универсальные).

Для определения переменного напряжения необходимо использовать устройства из подгруппы В3 или универсального типа (В7). Однако часто в этих вольтметрах применяются специальные преобразователи из переменного напряжения в постоянное.

В3 и В7 рассчитаны только для определения среднеквадратического гармонического напряжения. В этих электроизмерительных приборах возможно применение детекторов (преобразователей): пикового, выпрямительного и квадратичного. Оптимальным вариантом является вольтметр на квадратичном детекторе, при этом измеряемое значение выдается напрямую без всяких преобразований. Измерительные приборы на пиковых и выпрямительных детекторах пересчитывают значения, тем самым уменьшая точность измерений. Для измерения периодического негармонического напряжения выбирают вольтметр на квадратичном детекторе.

Таким образом, расчет напряжения играет важную роль в электротехнике. Расчеты для переменных и постоянных цепей электрического тока существенно отличаются, в результате чего необходимо определить сначала тип тока, а затем производить расчеты. Но также необходимо соблюдать технику безопасности при работах с электричеством. Ведь ее основные положения основаны на горьком опыте человечества.

формулы и определения / Блог :: Бингоскул

Немецкий физик Георг Симон Ом (1787—1854) открыл основной закон электрической цепи.

 

Закон Ома для участка цепи:

Определение: Cила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

  1. I — сила тока (в системе СИ измеряется — Ампер)
    • Сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
    • Формула: I=\frac{U}{R}
  2. U — напряжение (в системе СИ измеряется — Вольт)
    • Падение напряжения на участке проводника равно произведению силы тока в проводнике на сопротивление этого участка.
    • Формула: U=IR
  3. R — электрическое сопротивление (в системе СИ измеряется — Ом).
    • Электрическое сопротивление R это отношение напряжения на концах проводника к силе тока, текущего по проводнику.
    • Формула R=\frac{U}{I}

 

    Определение единицы сопротивления — Ом

    1 Ом представляет собой электрическое сопротивление участка проводника, по которому при напряжении 1 (Вольт) протекает ток 1 (Ампер).

     

    Закон Ома для полной цепи

    Определение: Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника

     

    Формула I=\frac{\varepsilon}{R+r}

    • \varepsilon — ЭДС источника напряжения, В;
    • I — сила тока в цепи, А;
    • R — сопротивление всех внешних элементов цепи, Ом;
    • r — внутреннее сопротивление источника напряжения, Ом.

     

    Как запомнить формулы закона Ома

    Треугольник Ома поможет запомнить закон. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления.

    .

     

    • U — электрическое напряжение;
    • I — сила тока;
    • P — электрическая мощность;
    • R — электрическое сопротивление

     

    Смотри также:

     

    Для закрепления своих знаний решай задания и варианты ЕГЭ по физике с ответами и пояснениями.

    Что такое Электрическое напряжение — Определение, измерение

    Большинство людей в быту могут оперировать таким понятием как электрическое напряжение. Практически все знают, что бытовая розетка находится под напряжением 220В, а пальчиковая батарейка выдает напряжение всего в 1.5В. При этом далеко не каждый человек, окончивший среднюю школу или даже технический ВУЗ в состоянии ответить, что же все-таки означает термин электрическое напряжение. В этом материале мы постараемся ответить на этот вопрос, по возможности не прибегая к сложной математике.

    Определение электрического напряжения

    В учебниках по физике и электротехнике можно встретить разные определения электрического напряжения. Одно из них звучит следующим образом: электрическое напряжение между двумя точками пространства равно разности потенциалов электрического поля в этих точках. Математически это записывается так:

    U=φ_a-φ_b (1).

    Где U – электрическое напряжение, а φ_a и φ_b потенциалы электрического поля в точках A и B соответственно.

    Если мы не знаем что такое потенциал электрического поля в точке, то приведенное выше определение мало проясняет вопрос, что же такое электрическое напряжение. Под потенциалом электрического поля в точке понимают работу, по перемещению единичного заряда совершаемую электрическим полем из данной точки в точку с нулевым потенциалом. На первый взгляд определение электрического потенциала кажется довольно сложным. Например, не совсем понятно, где находится точка с нулевым потенциалом.

     Для начала нужно запомнить, что электрический потенциал это работа по переносу единичного заряда. Если обратиться к формуле (1) то станет ясно, что электрическое напряжение не что иное, как разность двух работ. То есть электрическое напряжение, тоже есть работа. Отсюда мы приходим ко второму определению. Электрическое напряжение численно равно работе по переносу единичного электрического заряда из точки А в точку В. При этом φ_a и φ_b это потенциальная энергия которой обладает единичный заряд в точках А и В соответственно.

    Для лучшего понимания изложенного выше можно привести следующую аналогию. Любое тело, находящееся на некотором расстоянии от Земли обладает потенциальной энергией. Для того чтобы поднять тело выше придется выполнить некоторую работу. Величина этой работы будет равна разности потенциальных энергий, которыми обладает тело на разной высоте. Похожую картину мы наблюдаем, когда мы имеем дело с электрическим полем.

    Что касается точки пространства, в которой электрический заряд обладает нулевым электрическим потенциалом, то в теории электричества эту точку можно выбрать произвольно. Связанно это с тем, что электрическое поле «потенциально». Чтобы прояснить этот термин придется прибегнуть к высшей математике, а мы решили этого избежать. На практике специалисты в области электротехники в качестве точек с нулевым потенциалом часто выбирают поверхность Земли. И многие измерения выполняют относительно нее.

    Электрические поля могут быть постоянными (неизменными во времени) и переменными. Переменные электрические поля могут изменяться по различным математическим законам. В технике чаще всего используются переменные электрические поля, которые изменяются по закону синуса. В случае переменного электрического поля мгновенное значение разности потенциалов между двумя точками можно вычислить по следующей формуле:

    u(t)=U_m  sin⁡〖(ωt)〗 (2).

    Здесь u – мгновенное значение напряжения; Um – максимальное значение напряжения; ω – частота, t – время.

    Измерение электрического напряжения


    Электрическое напряжение измеряют с помощью вольтметров. Для измерения напряжения (разности потенциалов) на участке электрической цепи щупы вольтметра подключают к концам этого участка и по шкале считывают показания прибора.

    Существует множество типов вольтметров. Мы остановимся на аналоговых вольтметрах с магнитоэлектрическими измерительными механизмами. Эти механизмы довольно часто применяют в щитовых вольтметрах и многофункциональных измерительных приборах – мультиметрах. Магнитоэлектрический электрический механизм представляет собой проволочную катушку, размещенную между полюсами магнита. Катушка подвешивается на спиральных пружинах обеспечивающих высокую чувствительность прибора. С катушкой связана указательная стрелка, с помощью которой осуществляется отсчет показаний на шкале прибора. Ниже на рисунке показано устройство магнитоэлектрического механизма.


    Магнитоэлектрические измерительные механизмы имеют высокую чувствительность. С их помощью можно измерить напряжения составляющие сотые доли вольта. Для расширения пределов измерения последовательно с измерительным механизмом включают добавочные сопротивления. Схема простейшего вольтметра постоянного тока показана на рисунке.


    Одним из важнейших параметром вольтметра является его внутреннее сопротивление. Чем больше значение внутреннего сопротивления вольтметра, тем меньшую погрешность можно получить в процессе измерения. Для аналоговых вольтметров внутреннее сопротивление обычно составляет 20кОм на вольт. Если необходимо получить большее значение сопротивления для измерений применяют электронные вольтметры, цифровые или аналоговые.

    Для измерения переменного напряжения в конструкцию вольтметров включают выпрямители, которые преобразуют переменное напряжение в постоянное. Шкалы вольтметров для измерения переменного напряжения обычно градуируют в действующих (эффективных) значениях напряжения. Действующее значение переменного тока связано с максимальным следующим соотношением.

    U=1/√2 U_m=0,707U_m (3)

    Действующее значение удобно применять при вычислении мощности электрической цепи. Когда мы говорим, что в электрической розетке присутствует напряжение 220В, речь идет именно о действующем значении напряжения.

    В коротком материале трудно рассказать обо всех нюансах связанных с электрическим напряжением и способах его измерения. Но мы надеемся, что текст окажется полезен читателю.

    Что такое напряжение? Разница электрических потенциалов и ЭДС

    Что такое напряжение? Разница электрических потенциалов, определение и применение ЭДС

    Вы, должно быть, слышали о напряжении, токе и мощности, связанных с электричеством. Это один из основных фундаментальных параметров электричества. Воздушные линии электропередачи с очень высоким напряжением используются для передачи энергии на большие расстояния к центру нагрузки (города, дома и предприятия).

    Напряжение любого источника электропитания, такого как батареи, указано на корпусе, например, автомобильные батареи 12 В или 1.Аккумуляторы 5V, используемые в гаджетах. Электрические розетки в нашем доме обеспечивают напряжение 120/220, которое подается от опорных столбов.

    Вам необходимо знать напряжение, потому что для любого электрического оборудования важно, чтобы он питался от источника питания с требуемым номинальным напряжением, для которого оно предназначено. Требования к напряжению для каждого электрического оборудования указаны на паспортной табличке или в руководстве.

    Оборудование, рассчитанное на 220 В, не будет работать от источника питания 12 В, а оборудование, рассчитанное на 12 В, будет повреждено при подключении к источнику питания 220 В.Кроме того, напряжение бывает разных типов, и вы должны уметь различать, какое из них подходит для конкретного устройства.

    Связанные сообщения:

    Прежде чем понимать напряжение, нам нужно понять заряд.

    Электрический заряд

    Субатомные частицы, существующие в атоме, известные как протон и электрон, получают произвольные названия положительный заряд и отрицательный заряд соответственно. «Противоположные обвинения притягивают друг друга». Другими словами, электрон и протон притягиваются друг к другу.

    Предположим, две полосы, состоящие из положительно и отрицательно заряженных частиц, и положительный тестовый заряд помещены поверх отрицательной полосы в точке А. Расстояние между тестовым зарядом и отрицательной полосой равно нулю. Если я отпущу тестовый заряд, движения не будет.

    Если я перемещаю заряд в противоположном направлении (в сторону положительной полосы) и увеличиваю расстояние между ними, работа, выполняемая при перемещении заряда из точки A в точку B, преобразуется в потенциальную энергию, которая хранится в нем.Если я отпущу его, тестовый заряд ускорится к отрицательной полосе.

    Эта аналогия объясняет напряжение, где напряжение — это потенциальная энергия, соответствующая расстоянию между испытательным зарядом и положительной полосой. В первом случае между ними не было расстояния, и заряд не двигался, а это означает, что если нет напряжения, заряд (ток) не течет по проводнику.

    Хотя второй случай предполагает наличие некоторого напряжения, которое заставляет заряд двигаться в определенном направлении.Напряжение — это давление или сила, проталкивающая ток внутри проводника так же, как сила, испытываемая отрицательным зарядом.

    Мы также можем использовать аналогию с водой для понимания. Предположим, есть резервуар с водой, в дне которого есть отверстие, через которое вода может вытекать. Уровень воды внутри резервуара представляет собой напряжение, а количество вытекающей воды представляет собой ток.

    Если уровень воды внутри бака очень низкий, на вытекающую воду будет оказываться низкое давление.Следовательно, количество воды, вытекающей за единицу времени, будет небольшим. Если уровень воды высокий, он будет оказывать высокое давление, поэтому количество вытекающей воды увеличится. Та же идея используется в напряжении, где напряжение — это давление, которое сбрасывает ток в электрической цепи. Чем больше напряжение, тем больше ток через цепь.

    Что такое напряжение?

    В электрической цепи напряжение — это сила или давление, которое отвечает за проталкивание заряда в проводнике с замкнутой петлей.Прохождение заряда называется током. Напряжение — это электрический потенциал между двумя точками; чем больше напряжение, тем больше будет ток, протекающий через эту точку. Обозначается буквой V или E (используется для обозначения электродвижущей силы).

    Напряжение также известно как Электрическое давление , Электрическое напряжение или Разница электрических потенциалов . Существует небольшая разница в между напряжением и ЭДС (электродвижущая сила).

    Единица напряжения

    Единица измерения напряжения — вольт, названная в честь итальянского физика Алессандро Вольта, который изобрел первую батарею (точнее химическая батарея).

    Вольт определяется как «разность потенциалов между двумя точками, которая пропускает через нее ток в 1 ампер и рассеивает 1 ватт мощности между этими точками».

    Другими словами, «Вольт» — это разность потенциалов, которая перемещает один джоуль энергии на кулоновский заряд между двумя точками.

    V = J / C = W / A… в вольтах

    Где:

    • V = напряжение в «вольтах»
    • J = энергия в «джоулях»
    • C = заряд в «колумбусе»
    • W = Работа, выполненная в «Джоулях»
    • A = Ток в «Амперах»

    Связанное сообщение: Разница между током и напряжением

    Электродвижущая сила и разность потенциалов

    Разность потенциалов или напряжение и ЭДС взаимозаменяемы но между ними есть небольшая разница.Видите ли, напряжение источника питания, такого как батареи, падает, когда они подключены к цепи, имеющей нагрузку (сопротивление).

    Падение напряжения происходит из-за внутреннего сопротивления внутри батарей. Это пониженное напряжение известно как разность потенциалов, которая зависит от подключенной нагрузки, в то время как ЭДС (электродвижущая сила) — это ненагруженное напряжение батареи или источника питания.

    Разность потенциалов всегда меньше ЭДС, а ЭДС — это максимальное напряжение, которое может подавать аккумулятор.

    Похожие сообщения:

    Как создается напряжение?

    Напряжение генерируется с использованием различных методов, таких как химические реакции внутри батарей, солнечное излучение в фотоэлектрических элементах и ​​использование магнитной индукции в турбогенераторах. В любом случае источник питания создает разность потенциалов на своих выводах, которая может подтолкнуть заряд к протеканию через цепь.

    Полярность напряжения

    Полярность напряжения — очень важный момент для понимания напряжения.Как известно, напряжение — это разность электрических потенциалов между двумя точками. Разница подсказывает, какая из двух точек имеет наибольший потенциал. Другими словами, напряжение в одной точке берется со ссылкой на другую точку.

    Данная цепь имеет разрыв в точках A и B, где напряжение между ними равно 12 вольт. Напряжение в точке A составляет +12 В по отношению к B, а напряжение в точке B составляет –12 В по отношению к A. Эта полярность определяется клеммами источника питания.Предположим, мы замыкаем цепь, ток начнет течь по часовой стрелке от положительной клеммы к отрицательной.

    Теперь, если мы поменяем местами клеммы источника, полярности напряжения в точках A и B также поменяются местами. Если мы замкнем цепь, ток начнет течь против часовой стрелки. Направление тока в цепи зависит от полярности напряжения источника.

    В переменном токе полярность напряжения меняется несколько раз сама по себе.Следовательно, направление тока также меняется несколько раз.

    Как мы уже обсуждали, электрический ток течет от высокого потенциала к низкому, как показано в этих схемах. Но определение электрического тока — это поток электронов (отрицательных зарядов). Предполагается, что он течет от низкого потенциала (отрицательная клемма) к более высокому потенциалу (положительная клемма) батареи. Первый называется обычным током, а второй — электронным.

    Идея условного тока i.е. поток от высокого потенциала к низкому потенциалу был установлен задолго до открытия электронного тока, и множественные правила были установлены на основе обычного тока. Кроме того, не имеет значения, какое направление вы ему задаете, если оно остается неизменным.

    Типы напряжений

    Напряжение бывает разных типов в зависимости от характера полярности и уровней напряжения.

    Напряжение постоянного тока

    Постоянный ток (DC) — это однонаправленный ток, который течет только в одном направлении.Обычно источником питания постоянного тока являются батареи, полярность которых четко указана на них. Такие источники могут хранить электрическую энергию в форме постоянного тока. Он имеет фиксированную полярность, т.е. положительную и отрицательную. Напряжение постоянного тока, кроме знаков ±, обозначается тире с символом из трех точек (⎓).

    Поскольку постоянное напряжение толкает ток только в одном направлении, следует соблюдать осторожность при подключении нагрузки с соблюдением полярности. Изменение полярности приведет к повреждению цепи.

    Напряжение переменного тока

    При переменном токе (AC) направление тока постоянно изменяется из-за постоянного изменения полярностей напряжения.Электропитание в розетках нашего дома составляет 50/60 Гц, то есть он меняет полярность 100/120 раз за секунду. У него нет согласованной полярности, поэтому вы не увидите никаких знаков + или — на розетках. Следовательно, нагрузку можно подключать в любом положении. Замена клемм оборудования не повлияет на его работу. Напряжение переменного тока обозначается волновым символом ~.

    Любое оборудование, предназначенное для работы с переменным током, не может работать с постоянным напряжением, и обратное также верно. Тип напряжения четко указан на оборудовании, для которого он предназначен.

    ПЗВ сверхнизкого напряжения (<70)

    Сверхнизкое напряжение или коротко известное как ПЗН — это диапазон напряжений ниже 70 вольт. Такой уровень напряжения не вреден для человеческого организма. Он специально используется для устранения опасности поражения электрическим током. Он используется в освещении бассейнов, спа и оборудовании с батарейным питанием.

    Низкое напряжение LV (70–600 В)

    Низкое напряжение — это диапазон напряжений, который выше ПЗВ и падает ниже 600В. Это напряжение обычно подается в дома и промышленность.Розетки в наших домах подают напряжение 110/220 вольт. Не рекомендуется прикасаться к токоведущим проводам, имеющим такое напряжение. Прикосновение к такому напряжению вызовет у вас шок и оттолкнет, если вам повезет. Однако во влажных условиях он может оказаться фатальным, поэтому всегда будьте осторожны с ним.

    Среднее напряжение среднего напряжения (600–35 кВ)

    Диапазон среднего напряжения ниже 35 кВ, и эти напряжения обычно не используются для потребления. Он в основном используется для передачи данных между подстанциями и опорами электроснабжения возле наших домов.Эти напряжения очень опасны и очень фатальны.

    Высокое напряжение HV (115 000 — 230 000 кВ)

    Диапазон высокого напряжения от 115 кВ до 230 кВ. Эти напряжения используются для передачи электроэнергии между городами и от генерирующей станции к нагрузочной подстанции.

    Сверхвысокое напряжение сверхвысокого напряжения (345,000 — 765,000 кВ)

    Сверхвысокое напряжение в диапазоне от 345 кВ до 765 кВ, и они используются для передачи энергии на очень большие расстояния.Для передачи на большие расстояния необходимо увеличить напряжение. Увеличение напряжения уменьшает потери в линии, возникающие из-за тока.

    СВН сверхвысокого напряжения (765 000–1 100 000 кВ)

    Эти напряжения очень высокие и используются для передачи энергии на очень большие расстояния.

    Постоянный ток высокого напряжения (HVDC)

    Постоянный ток высокого напряжения или коротко известный как HVDC — это диапазон напряжений постоянного тока, используемых для эффективной передачи энергии на большие расстояния.как следует из названия, это постоянное напряжение в очень высоких диапазонах. Преимущество использования HVDC вместо HVAC заключается в том, что это дешевле, имея очень низкие потери при передаче энергии от удаленной генерирующей станции к центрам нагрузки, которые находятся на расстоянии более 600 км или 400 миль. Он также используется для подземной или подводной передачи энергии от морских ветряных электростанций.

    Как измерить напряжение?

    Мы используем несколько инструментов для измерения параметров линии, таких как ток, напряжение, сопротивление и т. Д.Прибор, используемый для измерения напряжения между двумя точками, известен как вольтметр .

    Вольтметр бывает аналоговым или цифровым. Развитие технологий упрощает считывание и предлагает точные показания с помощью цифрового вольтметра. В настоящее время используется цифровой вольтметр, поскольку он исключает человеческую ошибку, а также может быть более точным. Мы используем показания вольтметра для диагностики любой электрической системы.

    Примечание:

    • Всегда подключайте вольтметр к источнику напряжения при параллельной настройке.
    • Имейте в виду, что вольтметр подключается последовательно для измерения электрического тока.
    • Всегда выбирайте более низкий уровень напряжения (перемещая ручку вольтметра на более низкий уровень, например, 50 В, 100 В и т. Д.), А затем увеличивайте до желаемого уровня напряжения при измерении напряжения.
    • Выберите переменный и постоянный ток в вольтметре (переместив ручку измерителя AVO к напечатанным на нем символам переменного / постоянного тока), одновременно измеряя различные уровни напряжения для цепей переменного и постоянного тока соответственно.

    Связанные сообщения:

    Электрические формулы

    Общие электрические единицы, используемые в формулах и уравнениях:

    • Вольт — единица электрического потенциала или движущей силы — потенциал требуется для передачи одного ампера тока через один ом сопротивление
    • Ом — единица сопротивления — один ом — это сопротивление, обеспечиваемое прохождению одного ампера при подаче одного вольта
    • Ампера — единицы тока — один ампер — это ток, который один вольт может передать через сопротивление в один Ом
    • Ватт — единица электрической энергии или мощности — один ватт равен произведению одного ампера на один вольт — один ампер тока, протекающего под действием силы в один вольт, дает один ватт энергии
    • вольт ампер — произведение вольт и ампер, показанное вольтметром и амперметром — в системах постоянного тока вольт-ампер равен ваттам или передаваемой энергии — в системах переменного тока — вольты и амперы могут быть или не быть на 100% синхронными — при синхронности вольт-амперы равны ваттам на ваттметре — когда несинхронные вольт-амперы превышают ватты — реактивная мощность
    • киловольт-ампер — один киловольт-ампер — кВА — равно 1000 вольт-ампер
    • Коэффициент мощности — отношение ватт к вольт-амперам

    Электрический потенциал — закон Ома

    Закон Ома можно выразить как:

    U = RI (1a )

    U = P / I (1b)

    U = (PR) 1/2 (1c)

    Электрический ток — закон Ома

    I = U / R (2a)

    I = P / U (2b)

    I = (P / R) 1/2 (2c)

    Электрическое сопротивление — закон Ома

    R = U / I (3a)

    R = U 2 / P ( 3b)

    R = P / I 2 (3c)

    Пример — закон Ома

    A 12-вольтовая батарея подает питание с сопротивлением 18 Ом .

    I = (12 В) / (18 Ом )

    = 0,67 (A)

    Электроэнергия

    P = UI (4a)

    P = RI 2 (4b)

    P = U 2 / R (4c)

    где

    P = мощность (Вт с, Дж, Дж )

    U = напряжение (вольт, В)

    I = ток (амперы, А)

    R = сопротивление (Ом, Ом)

    Электрическая энергия

    Электрическая энергия — это мощность, умноженная на время:

    W = P t (5)

    где

    W = энергия (Ws, Дж)

    t = время (с) 90 005

    Альтернатива — мощность может быть выражена

    P = Вт / т (5b)

    Мощность — это потребление энергии затратами времени.

    Пример — потеря энергии в резисторе

    A 12 В батарея подключена последовательно с сопротивлением 50 Ом . Мощность, потребляемая резистором, может быть рассчитана как

    P = (12 В) 2 / (50 Ом)

    = 2,9 Вт

    Энергия, рассеиваемая за 60 секунд может быть рассчитана

    Вт = (2,9 Вт) (60 с)

    = 174 Вт, Дж

    = 0.174 кВт

    = 4,8 10 -5 кВтч

    Пример — электрическая плита

    Электрическая плита потребляет 5 МДж энергии от источника питания 230 В при включении в течение 60 минут .

    Номинальная мощность — энергия в единицу времени — печи может быть рассчитана как

    P = (5 МДж) (10 6 Дж / МДж) / ((60 мин) (60 с / мин))

    = 1389 Вт

    = 1.39 кВт

    Ток можно вычислить

    I = (1389 Вт) / (230 В)

    = 6 ампер

    Электродвигатели

    КПД электродвигателя

    μ = 746 P / P input_w (6)

    где

    μ = КПД

    P hp = выходная мощность (л.с.)

    P входная электрическая мощность )

    или альтернативно

    μ = 746 P л.с. / (1.732 VI PF) (6b)

    Электрический двигатель — мощность

    P 3-фазный = (UI PF 1,732) / 1,000 (7)

    где

    P 3-фазный = электрическая мощность трехфазного двигателя (кВт)

    PF = коэффициент мощности электродвигателя

    Электрический двигатель — ток

    I 3-фазный = (746 P л.с. ) / (1 .732 В μ PF) (8)

    где

    I 3-фазный = электрический ток 3-фазного двигателя (амперы)

    PF = коэффициент мощности электродвигателя

    Перегрев электродвигателей: основная причина отказа

    Интерактивные технологии позволяют проводить оценку всей системы двигателя для облегчения поиска и устранения неисправностей.

    Специалисты по обслуживанию согласны с тем, что чрезмерный нагрев вызывает быстрое ухудшение изоляции обмотки двигателя.Общее правило гласит, что срок службы изоляции сокращается вдвое на каждые 10 ° C дополнительного нагрева обмоток. Например, если двигатель, который обычно прослужит 20 лет при регулярной эксплуатации, работает при температуре на 40 ° C выше номинальной, срок службы двигателя составит около 1 года.

    Ведущие организации по стандартизации пришли к выводу, что 30 процентов отказов электродвигателей связаны с повреждением изоляции, а 60 процентов — с перегревом. Опубликованы статьи, в которых говорится, что серьезной причиной износа подшипников является перегрев.

    Обычно существует пять основных причин перегрева — перегрузка, плохое питание, высокий коэффициент полезного действия, частые остановки и запуски и экологические причины.

    Условия перегрузки
    Ток статора часто используется для измерения уровня нагрузки, но уровень нагрузки можно легко замаскировать из-за состояния перенапряжения. Распространенной ошибкой является работа при перенапряжении для уменьшения тока статора и уменьшения выделения тепла. Было показано, что для двигателей мощностью от 10 до 200 л.с., работающие при 10-процентном перенапряжении, обычно уменьшают потери только на 1-3 процента.

    Даже если ток двигателя может изменяться при приложении перенапряжений, чрезмерное разрушающее тепло в двигателе не улучшится. Погрешность нагрузки более 10 процентов может быть получена, если полагаться на показания тока статора для определения вероятных уровней нагрузки и нагрева. В условиях полной нагрузки это разница между жизнью и смертью двигателя.

    Например, на угольной электростанции в США двигатель мощностью 6,6 кВ мощностью 7000 л.с. работал с перегрузкой по току всего на 7 процентов, но с перенапряжением на 8 процентов.Два идентичных приложения подверглись внеплановым отключениям за предыдущие 12 месяцев. Небольшая перегрузка была выявлена ​​путем проверки тока статора этого двигателя. Однако, посмотрев на истинную нагрузку на двигатель, была обнаружена почти 20-процентная перегрузка. Это объясняет, почему эти двигатели вышли из строя. Ремонт каждого из этих трех двигателей обошелся в сотни тысяч долларов.

    В промышленных приложениях условия идеального напряжения встречаются редко. Истинным источником тепла являются не только текущие уровни, но и потери.Эти потери являются разрушающим фактором для обмоток и серьезной причиной повреждения подшипников.

    Это оправдывает необходимость точного знания уровня рабочей нагрузки. Только точные расчеты уровня нагрузки могут дать надежные измерения чрезмерных потерь и перегрева в двигателе.

    Состояние питания
    Электродвигатели на заводах-изготовителях обычно нуждаются в снижении номинальных характеристик из-за плохого режима питания, чтобы максимально продлить срок их службы. Разделы II и IV NEMA MG-1 определяют, какое качество напряжения в зависимости от баланса и искажений допускает какой уровень процентной нагрузки.На рис. 1 показана кривая снижения номинальных характеристик NEMA для процента дисбаланса. Согласно кривой снижения характеристик, чем выше уровень дисбаланса, тем ниже приемлемый уровень установившейся нагрузки. Например, если двигатель мощностью 100 л.с. имеет коэффициент дисбаланса 3 процента, мощность двигателя следует снизить до 0,88 или 88 процентов от мощности, 88 л.с.

    Частое использование частотно-регулируемых приводов (ЧРП) может привести к пагубным последствиям для электродвигателей из-за отсутствия электроэнергии на производственных предприятиях.На рис. 2 показано напряжение, которое частотно-регулируемый привод, работающий почти в 6-пульсном режиме, подает на двигатель. Искаженные токи — это реакция двигателя на плохое питание. Налицо серьезные искажения. В этом сценарии показано снижение номинальных характеристик по NEMA на 0,7, что позволяет двигателю работать только на 70% мощности.

    Эффективный коэффициент обслуживания
    Ключом к обнаружению наиболее частых причин перегрева является точность оценки уровня нагрузки. Это можно определить, взглянув только на токи и напряжения.Формула для расчета эффективного коэффициента обслуживания:

    Эффективный коэффициент обслуживания дает специалистам по профилактическому обслуживанию твердый вывод о нагрузке на любое конкретное приложение нагрузки двигателя.

    В другом примере данные, собранные с помощью динамометра, показали, что тестируемый двигатель мощностью 300 л.с. работал почти с полной нагрузкой, 99,7 процента. Искажения напряжения были плохими из-за ранее не идентифицированного дефекта выпрямителя кремниевого контроллера в блоке питания. Результирующий коэффициент снижения номинальных характеристик NEMA равен 0.85 приводит к эффективному коэффициенту обслуживания 1,17, который сигнализирует о состоянии тревоги.

    Независимо от эксплуатационного коэффициента, указанного на паспортной табличке, любой двигатель, работающий с рабочим коэффициентом выше 1,0, находится под нагрузкой. Более высокий коэффициент обслуживания означает способность двигателя к перегрузке в течение коротких периодов времени, а не более высокие рабочие характеристики в установившемся режиме. Условия низкого напряжения являются частыми и могут быть вызваны множеством причин. NEMA указывает, какой уровень нагрузки разрешен для условий низкого напряжения. Инструменты онлайн-мониторинга, способные точно рассчитать рабочую нагрузку, обеспечивают работу установки в соответствующих пределах.

    Частые пуски и остановки
    В таблице 1 показано максимальное количество пусков и остановок для сетевых двигателей в зависимости от их номинальных значений и скорости. Очень важно ограничить частоту запуска, самого напряженного этапа работы двигателя.

    Многие хорошо задокументированные случаи повторяющихся отказов двигателя были устранены путем увеличения номинальной мощности двигателя, что сокращало время наработки на отказ. Однако основной причиной сбоя на самом деле была частота пусков и остановок.Главное — внимательно следить за количеством запусков — ежечасно для малых или средних двигателей и ежедневно для более крупных двигателей.

    Он-лайн тестирование может гарантировать полное соответствие профессиональным стандартам. Его можно использовать для выявления причин сбоев в операциях, не соответствующих стандартам, путем включения этих стандартов в операции долгосрочного неконтролируемого мониторинга.

    Условия окружающей среды
    Термография часто используется для определения условий, в которых используются электродвигатели.Плохое охлаждение из-за высокой температуры окружающей среды, засорения воздуховодов и т. Д. Являются типичными примерами неэлектрической температурной нагрузки как на двигатель, так и на систему изоляции. Химические абразивные вещества в воздухе, влажная эксплуатация и работа на большой высоте — вот несколько общих факторов воздействия окружающей среды.

    Испытания в соответствии со стандартами
    Отказы подшипников и обмоток являются наиболее распространенными отказами двигателей. Основная причина обычно — чрезмерная жара. Практика профилактического обслуживания часто ограничивает электрические измерения в режиме онлайн интерпретацией уровней тока.Хотя этот метод важен, он не дает результатов при выявлении отказов, вызванных чрезмерным нагревом обмотки. Лучший способ обеспечить успешное профилактическое обслуживание и мониторинг — это тестирование в соответствии с NEMA и другими профессиональными стандартами. Автоматическая оценка необходима для эффективного обеспечения состояния моторики. MT


    Эрнесто Дж. Виденбруг, доктор философии, инженер-исследователь в компании Baker Instrument Co., 4812 McMurry Ave., Fort Collins, CO 80525; телефон (970) 282-1200.

    Фиг.1. Кривая снижения номинальных характеристик NEMA. Этот показатель также определяется формулой.

    вернуться к артикулу

    Рис. 2. Крайние искажения при медленном переключении частотно-регулируемого привода (50 л.с., 4-полюсный)

    вернуться к артикулу

    Таблица 1. Максимальное количество пусков и остановов для двигателей с сетевым приводом в зависимости от их номинальных значений и скорости.

    л.с.

    2-полюсный

    4 полюса

    6-полюсный

    А

    К

    А

    К

    А

    К

    1

    15

    75

    30

    38

    34

    33

    5

    8.1

    83

    16,3

    42

    18,4

    37

    10

    6,2

    92

    12,5

    46

    14,2

    41

    15

    5,4

    100

    10.7

    46

    12,1

    44

    20

    4,8

    100

    9,6

    55

    10,9

    48

    50

    3,4

    145

    6,8

    72

    7.7

    64

    75

    2,9

    180

    5,8

    90

    6,6

    79

    100

    2,6

    220

    5,2

    110

    5,9

    97

    200

    2

    600

    4

    300

    4.8

    268

    250

    1,8

    1000

    3,7

    500

    4,2

    440

    A = Максимальное количество пусков в час
    C = Минимальное время отдыха или выключения в секундах между пусками

    вернуться к артикулу

    7.3: Электрический потенциал и разность потенциалов

    Цели обучения

    К концу этого раздела вы сможете:

    • Определение электрического потенциала, напряжения и разности потенциалов
    • Определите электрон-вольт
    • Вычислить электрический потенциал и разность потенциалов на основе потенциальной энергии и электрического поля
    • Опишите системы, в которых электрон-вольт является полезной единицей.
    • Применение энергосбережения в электрических системах

    Напомним, что ранее мы определили электрическое поле как величину, не зависящую от тестового заряда в данной системе, что, тем не менее, позволяет нам вычислить силу, которая возникнет в результате произвольного тестового заряда.(При отсутствии другой информации предполагается, что пробный заряд положительный.) Мы кратко определили поле для гравитации, но гравитация всегда притягивает, тогда как электрическая сила может быть притягивающей или отталкивающей. Следовательно, хотя потенциальная энергия вполне достаточна в гравитационной системе, удобно определить величину, которая позволяет нам вычислить работу над зарядом независимо от величины заряда. Непосредственный расчет работы может быть затруднен, поскольку \ (W = \ vec {F} \ cdot \ vec {d} \), а направление и величина \ (\ vec {F} \) могут быть сложными для нескольких зарядов, например предметы необычной формы и по произвольным путям.Но мы знаем, что, поскольку \ (\ vec {F} \), работа и, следовательно, \ (\ Delta U \) пропорциональны испытательному заряду \ (q \). Чтобы получить физическую величину, не зависящую от испытательного заряда, мы определяем электрический потенциал \ (В \) (или просто потенциал, поскольку понимается электрический) как потенциальную энергию на единицу заряда:

    Электрический потенциал

    Потенциальная электрическая энергия на единицу заряда

    \ [V = \ dfrac {U} {q}. \ label {eq-1} \]

    Поскольку U пропорционально q , зависимость от q отменяется.Таким образом, V не зависит от q . Изменение потенциальной энергии \ (\ Delta U \) имеет решающее значение, поэтому нас интересует разность потенциалов или разность потенциалов \ (\ Delta V \) между двумя точками, где

    Разница электрических потенциалов

    Разность электрических потенциалов между точками A, и B , \ (V_B — V_A \) определяется как изменение потенциальной энергии заряда q , перемещенного от A к B , разделенному по заряду.Единицами разности потенциалов являются джоули на кулон, получившие название вольт (В) в честь Алессандро Вольта.

    \ [1 \, V = 1 \, J / C \ label {eq0} \]

    Знакомый термин напряжение — это общее название разности электрических потенциалов. Имейте в виду, что всякий раз, когда указывается напряжение, под ним понимается разность потенциалов между двумя точками. Например, каждая батарея имеет две клеммы, и ее напряжение — это разность потенциалов между ними. По сути, точка, которую вы выбираете равным нулю вольт, произвольна.Это аналогично тому факту, что гравитационная потенциальная энергия имеет произвольный ноль, например, уровень моря или, возможно, пол лекционного зала. Стоит подчеркнуть различие между разностью потенциалов и электрической потенциальной энергией.

    Разность потенциалов и электрическая потенциальная энергия

    Связь между разностью потенциалов (или напряжением) и электрической потенциальной энергией определяется формулой

    .

    \ [\ Delta V = \ dfrac {\ Delta U} {q} \ label {eq1} \]

    или

    \ [\ Delta U = q \ Delta V.\ label {eq2} \]

    Напряжение — это не то же самое, что энергия. Напряжение — это энергия на единицу заряда. Таким образом, аккумулятор мотоцикла и автомобильный аккумулятор могут иметь одинаковое напряжение (точнее, одинаковую разность потенциалов между клеммами аккумулятора), но один хранит гораздо больше энергии, чем другой, потому что \ (\ Delta U = q \ Delta V \) . Автомобильный аккумулятор может заряжать больше, чем аккумулятор мотоцикла, хотя оба аккумулятора — 12 В.

    Пример \ (\ PageIndex {1} \): расчет энергии

    У вас 12.Аккумулятор мотоцикла с напряжением 0 В, который может заряжать 5000 C, и автомобильный аккумулятор с напряжением 12 В, который может заряжать 60 000 C. Сколько энергии дает каждый? (Предположим, что числовое значение каждого заряда с точностью до трех значащих цифр.)

    Стратегия

    Сказать, что у нас батарея на 12,0 В, означает, что на ее выводах разность потенциалов составляет 12,0 В. Когда такая батарея перемещает заряд, она пропускает заряд через разность потенциалов 12,0 В, и заряд получает изменение потенциальной энергии, равное \ (\ Delta U = q \ Delta V \).5 \, J. \ nonumber \]

    Значение

    Напряжение и энергия связаны, но это не одно и то же. Напряжения батарей одинаковы, но энергия, подаваемая каждым из них, совершенно разная. Автомобильный аккумулятор требует запуска гораздо более мощного двигателя, чем мотоцикл. Также обратите внимание, что когда аккумулятор разряжается, часть его энергии используется внутри, а напряжение на его выводах падает, например, когда фары тускнеют из-за разряда автомобильного аккумулятора. Энергия, подаваемая батареей, по-прежнему рассчитывается, как в этом примере, но не вся энергия доступна для внешнего использования.

    Упражнение \ (\ PageIndex {1} \)

    Сколько энергии имеет батарея AAA на 1,5 В, способная нагреться до 100 градусов Цельсия?

    Ответ

    \ (\ Delta U = q \ Delta V = (100 \, C) (1.5 \, V) = 150 \, J \)

    Обратите внимание, что энергии, вычисленные в предыдущем примере, являются абсолютными значениями. Изменение потенциальной энергии для аккумулятора отрицательное, так как он теряет энергию. Эти батареи, как и многие другие электрические системы, действительно перемещают отрицательный заряд — в частности, электроны.Батареи отталкивают электроны от своих отрицательных выводов ( A, ) через все задействованные схемы и притягивают их к своим положительным выводам ( B ), как показано на рисунке \ (\ PageIndex {1} \). Изменение потенциала равно \ (\ Delta V = V_B — V_A = +12 \, V \), а заряд q отрицательный, так что \ (\ Delta U = q \ Delta V \) отрицательный, что означает потенциальная энергия батареи уменьшилась, когда q переместилось с A на B .

    Рисунок \ (\ PageIndex {1} \): Аккумулятор перемещает отрицательный заряд от отрицательного вывода через фару к положительному выводу. Соответствующие комбинации химических веществ в батарее разделяют заряды, так что отрицательный вывод имеет избыток отрицательного заряда, который отталкивается им и притягивается к избыточному положительному заряду на другом выводе. С точки зрения потенциала положительный вывод имеет более высокое напряжение, чем отрицательный. Внутри батареи движутся как положительные, так и отрицательные заряды.

    Пример \ (\ PageIndex {2} \): Сколько электронов проходит через фару каждую секунду?

    Когда автомобильный аккумулятор 12,0 В питает одну фару мощностью 30,0 Вт, сколько электронов проходит через нее каждую секунду?

    Стратегия

    Чтобы узнать количество электронов, мы должны сначала найти заряд, который перемещается за 1,00 с. Перемещаемый заряд связан с напряжением и энергией через уравнения \ (\ Delta U = q \ Delta V \). Лампа мощностью 30,0 Вт потребляет 30,0 джоулей в секунду. Поскольку батарея теряет энергию, мы имеем \ (\ Delta U = — 30 \, J \) и, поскольку электроны переходят от отрицательного вывода к положительному, мы видим, что \ (\ Delta V = +12.0 \, V \).

    Решение

    Чтобы найти заряд q перемещенного, решаем уравнение \ (\ Delta U = q \ Delta V \):

    \ [q = \ dfrac {\ Delta U} {\ Delta V}. \]

    Вводя значения для \ (\ Delta U \) и \ (\ Delta V \), получаем

    \ [q = \ dfrac {-30.0 \, J} {+ 12.0 \, V} = \ dfrac {-30.0 \, J} {+ 12.0 \, J / C} = -2,50 \, C. \]

    Число электронов \ (n_e \) — это общий заряд, деленный на заряд одного электрона. То есть

    \ [n_e = \ dfrac {-2.{19} \, электрон. \]

    Значение

    Это очень большое число. Неудивительно, что мы обычно не наблюдаем отдельные электроны, так много которых присутствует в обычных системах. Фактически, электричество использовалось в течение многих десятилетий, прежде чем было установлено, что движущиеся заряды во многих обстоятельствах были отрицательными. Положительный заряд, движущийся в направлении, противоположном отрицательному, часто производит идентичные эффекты; это затрудняет определение того, что движется или оба движутся.{19} \, электроны \)

    Электрон-вольт

    Энергия, приходящаяся на один электрон, очень мала в макроскопических ситуациях, подобных тому, что было в предыдущем примере — крошечная доля джоуля. Но в субмикроскопическом масштабе такая энергия, приходящаяся на одну частицу (электрон, протон или ион), может иметь большое значение. Например, даже крошечной доли джоуля может быть достаточно, чтобы эти частицы разрушили органические молекулы и повредили живые ткани. Частица может нанести ущерб при прямом столкновении или может создать вредные рентгеновские лучи, которые также могут нанести ущерб.Полезно иметь единицу энергии, относящуюся к субмикроскопическим эффектам.

    На рисунке \ (\ PageIndex {2} \) показана ситуация, связанная с определением такой единицы энергии. Электрон ускоряется между двумя заряженными металлическими пластинами, как это могло бы быть в телевизионной лампе или осциллографе старой модели. Электрон приобретает кинетическую энергию, которая позже преобразуется в другую форму — например, в свет в телевизионной трубке. (Обратите внимание, что с точки зрения энергии, «спуск» для электрона означает «подъем» для положительного заряда.) Поскольку энергия связана с напряжением соотношением \ (\ Delta U = q \ Delta V \), мы можем рассматривать джоуль как кулон-вольт.

    Рисунок \ (\ PageIndex {2} \): Типичная электронная пушка ускоряет электроны, используя разность потенциалов между двумя разделенными металлическими пластинами. По закону сохранения энергии кинетическая энергия должна равняться изменению потенциальной энергии, так что \ (KE = qV \). Энергия электрона в электрон-вольтах численно равна напряжению между пластинами. Например, разность потенциалов 5000 В производит электроны с энергией 5000 эВ.{-19} \, J. \]

    Электрону, ускоренному через разность потенциалов 1 В, придается энергия 1 эВ. Отсюда следует, что электрон, ускоренный до 50 В, приобретает 50 эВ. Разность потенциалов 100 000 В (100 кВ) дает электрону энергию 100 000 эВ (100 кэВ) и так далее. Точно так же ион с двойным положительным зарядом, ускоренный до 100 В, получает 200 эВ энергии. Эти простые соотношения между ускоряющим напряжением и зарядами частиц делают электрон-вольт простой и удобной единицей энергии в таких обстоятельствах.

    Электрон-вольт обычно используется в субмикроскопических процессах — химическая валентная энергия, молекулярная и ядерная энергия связи входят в число величин, часто выражаемых в электрон-вольтах. Например, для разрушения некоторых органических молекул требуется около 5 эВ энергии. Если протон ускоряется из состояния покоя через разность потенциалов 30 кВ, он приобретает энергию 30 кэВ (30 000 эВ) и может разрушить до 6000 таких молекул \ ((30 000 \, эВ \,: \, 5 \, эВ \, на \, молекула = 6000 \, молекул) \).Энергия ядерного распада составляет порядка 1 МэВ (1000000 эВ) на событие и, таким образом, может нанести значительный биологический ущерб.

    Сохранение энергии

    Полная энергия системы сохраняется, если нет чистого добавления (или вычитания) из-за работы или теплопередачи. Для консервативных сил, таких как электростатическая сила, закон сохранения энергии утверждает, что механическая энергия постоянна.

    Механическая энергия — это сумма кинетической энергии и потенциальной энергии системы; то есть \ (K + U = константа \).Потеря U для заряженной частицы становится увеличением ее K . Сохранение энергии выражается в форме уравнения как

    \ [K + U = константа \] или \ [K_i + U_i = K_f + U_f \]

    , где i и f обозначают начальные и конечные условия. Как мы уже много раз выясняли, учет энергии может дать нам понимание и облегчить решение проблем.

    Пример \ (\ PageIndex {3} \): электрическая потенциальная энергия преобразована в кинетическую энергию

    Вычислите конечную скорость свободного электрона, ускоренного из состояния покоя через разность потенциалов 100 В.6 \, м / с. \]

    Значение

    Обратите внимание, что и заряд, и начальное напряжение отрицательны, как показано на рисунке \ (\ PageIndex {2} \). Из обсуждения электрического заряда и электрического поля мы знаем, что электростатические силы, действующие на мелкие частицы, обычно очень велики по сравнению с силой тяжести. Большая конечная скорость подтверждает, что гравитационная сила здесь действительно незначительна. Большая скорость также указывает на то, насколько легко ускорить электроны малым напряжением из-за их очень малой массы.В электронных пушках обычно используются напряжения, намного превышающие 100 В. Эти более высокие напряжения вызывают настолько большие скорости электронов, что необходимо учитывать эффекты специальной теории относительности, которые будут обсуждаться в другом месте. Вот почему в этом примере мы рассматриваем низкое напряжение (точно).

    Упражнение \ (\ PageIndex {3} \)

    Как этот пример изменится с позитроном? Позитрон идентичен электрону, за исключением того, что заряд положительный.

    Ответ

    Это будет движение в противоположном направлении, что не повлияет на представленные расчеты.p \ vec {E} \ cdot d \ vec {l}. \]

    Из нашего предыдущего обсуждения потенциальной энергии заряда в электрическом поле результат не зависит от выбранного пути, и, следовательно, мы можем выбрать наиболее удобный интегральный путь.

    Рассмотрим частный случай положительного точечного заряда q в начале координат. Чтобы вычислить потенциал, вызванный q на расстоянии r от начала координат относительно точки отсчета 0 на бесконечности (напомним, что мы сделали то же самое для потенциальной энергии), пусть \ (P = r \) и \ (R = \ infty \) с \ (d \ vec {l} = d \ vec {r} = \ hat {r} dr \) и используйте \ (\ vec {E} = \ frac {kq} {r ^ 2 } \ hat {r} \).2} dr = \ dfrac {kq} {r} — \ dfrac {kq} {\ infty} = \ dfrac {kq} {r}. \]

    Этот результат,

    \ [V_r = \ dfrac {kq} {r} \]

    — это стандартная форма потенциала точечного заряда. Это будет подробнее рассмотрено в следующем разделе.

    Чтобы изучить еще один интересный частный случай, предположим, что однородное электрическое поле \ (\ vec {E} \) создается путем размещения разности потенциалов (или напряжения) \ (\ Delta V \) на двух параллельных металлических пластинах, обозначенных A и B (Рисунок \ (\ PageIndex {3} \)).Изучение этой ситуации покажет нам, какое напряжение необходимо для создания определенного электрического поля. Это также покажет более фундаментальную взаимосвязь между электрическим потенциалом и электрическим полем.

    Рисунок \ (\ PageIndex {3} \): соотношение между V и E для параллельных проводящих пластин равно \ (E = V / d \). (Обратите внимание, что по величине \ (\ Delta V = V_ {AB} \). Для заряда, который перемещается от пластины A с более высоким потенциалом к ​​пластине B с более низким потенциалом, необходимо включить знак минус следующим образом : \ (- \ Delta V = V_A — V_B = V_ {AB} \).)

    С точки зрения физика, \ (\ Delta V \) или \ (\ vec {E} \) можно использовать для описания любого взаимодействия между зарядами. Однако \ (\ Delta V \) является скалярной величиной и не имеет направления, а \ (\ vec {E} \) — векторной величиной, имеющей как величину, так и направление. (Обратите внимание, что величина электрического поля, скалярная величина, представлена ​​как E .) Связь между \ (\ Delta V \) и \ (\ vec {E} \) выявляется путем вычисления работы, выполняемой электрическая сила при перемещении заряда из точки A, в точку B, .Но, как отмечалось ранее, произвольное распределение зарядов требует расчетов. Поэтому мы рассматриваем однородное электрическое поле как интересный частный случай.

    Работа, совершаемая электрическим полем на рисунке \ (\ PageIndex {3} \) по перемещению положительного заряда q из A , положительная пластина, более высокий потенциал, в B , отрицательная пластина, более низкий потенциал. , это

    \ [W = — \ Delta U = — q \ Delta V. \]

    Разность потенциалов между точками A и B составляет

    \ [- \ Delta V = — (V_B — V_A) = V_A — V_B = V_ {AB}.\]

    Если ввести это в выражение для работы, получится

    \ [W = qV_ {AB}. \]

    Работа равна \ (W = \ vec {F} \ cdot \ vec {d} = Fd \, cos \, \ theta \): здесь \ (cos \, \ theta = 1 \), поскольку путь параллелен поле. Таким образом, \ (W = Fd \). Поскольку \ (F = qE \), мы видим, что \ (W = qEd \).

    Подстановка этого выражения для работы в предыдущее уравнение дает

    \ [qEd = qV_ {AB}. \]

    Заряд отменяется, поэтому для напряжения между точками A и B получаем .

    Только в однородном E-поле: \ [V_ {AB} = Ed \] \ [E = \ dfrac {V_ {AB}} {d} \], где d — это расстояние от A до B , или расстояние между пластинами на рисунке \ (\ PageIndex {3} \). Обратите внимание, что это уравнение подразумевает, что единицы измерения электрического поля — вольт на метр. Мы уже знаем, что единицы измерения электрического поля — ньютоны на кулон; таким образом, верно следующее соотношение между единицами:

    \ [1 \, N / C = 1 \, В / м. \]

    Кроме того, мы можем продолжить это до интегральной формы.B \ vec {E} \ cdot d \ vec {l}. \]

    В качестве демонстрации из этого мы можем вычислить разность потенциалов между двумя точками ( A, и B ), равноудаленными от точечного заряда q в начале координат, как показано на рисунке \ (\ PageIndex {4} \) .

    Рисунок \ (\ PageIndex {4} \): дуга для вычисления разности потенциалов между двумя точками, которые находятся на одинаковом расстоянии от точечного заряда в начале координат. 2} \ hat {r} \).6 В / м \). Выше этого значения поле создает достаточную ионизацию в воздухе, чтобы сделать воздух проводником. Это допускает разряд или искру, уменьшающие поле. Каково же максимальное напряжение между двумя параллельными проводящими пластинами, разделенными 2,5 см сухого воздуха?

    Стратегия

    Дано максимальное электрическое поле E между пластинами и расстояние d между ними. Мы можем использовать уравнение \ (V_ {AB} = Ed \) для вычисления максимального напряжения.4 \, V \] или \ [V_ {AB} = 75 \, kV. \]

    (Ответ состоит только из двух цифр, поскольку максимальная напряженность поля является приблизительной.)

    Значение

    Одно из следствий этого результата состоит в том, что требуется около 75 кВ, чтобы совершить скачок искры через зазор размером 2,5 см (1 дюйм), или 150 кВ для искры 5 см. Это ограничивает напряжения, которые могут существовать между проводниками, возможно, на линии электропередачи. Меньшее напряжение может вызвать искру, если на поверхности есть шипы, поскольку острые точки имеют большую напряженность поля, чем гладкие поверхности.Влажный воздух разрушается при более низкой напряженности поля, а это означает, что меньшее напряжение заставит искру проскочить через влажный воздух. Наибольшие напряжения могут создаваться статическим электричеством в засушливые дни (Рисунок \ (\ PageIndex {5} \)).

    Рисунок \ (\ PageIndex {5} \): искровая камера используется для отслеживания траекторий частиц высоких энергий. Ионизация, создаваемая частицами, когда они проходят через газ между пластинами, позволяет искре прыгнуть. Искры расположены перпендикулярно пластинам, следуя силовым линиям электрического поля между ними.Разность потенциалов между соседними пластинами недостаточно высока, чтобы вызвать искры без ионизации, производимой частицами из экспериментов с ускорителем (или космическими лучами). Эта форма детектора сейчас устарела и больше не используется, кроме как в демонстрационных целях. (кредит b: модификация работы Джека Коллинза)

    Пример \ (\ PageIndex {1B} \): Поле и сила внутри электронной пушки

    Электронная пушка (рисунок \ (\ PageIndex {2} \)) имеет параллельные пластины, разделенные расстоянием 4,00 см, и дает 25 электронов.0 кэВ энергии. а) Какова напряженность электрического поля между пластинами? б) Какую силу это поле окажет на кусок пластика с зарядом \ (0,500- \ мкКл), который проходит между пластинами?

    Стратегия

    Так как напряжение и расстояние между пластинами указаны, напряженность электрического поля может быть вычислена непосредственно из выражения \ (E = \ frac {V_ {AB}} {d} \). Зная напряженность электрического поля, мы можем найти силу, действующую на заряд, используя \ (\ vec {F} = q \ vec {E} \).Поскольку электрическое поле имеет только одно направление, мы можем записать это уравнение в терминах величин, \ (F = qE \).

    Решение

    а. Выражение для величины электрического поля между двумя однородными металлическими пластинами равно

    .

    \ [E = \ dfrac {V_ {AB}} {d}. \] Поскольку электрон является однозарядным и ему дается энергия 25,0 кэВ, разность потенциалов должна составлять 25,0 кВ. Вводя это значение для \ (V_ {AB} \) и расстояния между плитами 0,0400 м, получаем \ [E = \ frac {25.5 В / м) = 0,313 \, Н. \]

    Значение Обратите внимание, что единицы измерения — ньютоны, поскольку \ (1 \, V / m = 1 \, N / C \). Поскольку электрическое поле между пластинами однородно, сила, действующая на заряд, одинакова независимо от того, где находится заряд между пластинами.

    Пример \ (\ PageIndex {4C} \): расчет потенциала точечного заряда

    Учитывая точечный заряд \ (q = + 2,0-n C \) в начале координат, вычислите разность потенциалов между точкой \ (P_1 \) на расстоянии \ (a = 4,0 \, см \) от q и \ (P_2 \) расстояние \ (b = 12.o \) между ними (Рисунок \ (\ PageIndex {6} \)).

    .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *