Чему равна мощность: Мощность — Википедия

Содержание

Формула мощности в физике

Определение и формулы мощности

Определение

Мощностью некоторой силы является скалярная физическая величина, которая характеризует скорость произведения работы данной силой. Мощность часто обозначают буквами: N, P.

$$P=\frac{\Delta A}{\Delta t}(1)$$

В том случае, если за равные малые промежутки времени выполняется разная работа, то мощность является переменной во времени. Тогда вводят мгновенное значение мощности:

$$P=\lim _{\Delta t \rightarrow 0} \frac{\delta A}{\Delta t}=\frac{d A}{d t}$$

где $\delta A$ – элементарная работа, которую выполняет сила, $\Delta t$ – отрезок времени в течение, которого данная работа была выполнена. Если мгновенная мощность не является постоянной величиной, то выражение (1) определяет среднюю мощностьза время $\Delta t$.

Мощность силы можно определить как скалярное произведение силы на скорость, с которой движется точка приложения рассматриваемой силы:

$$P=\bar{F} \bar{v}=F_{\tau} v$$

где $F_{\tau}$ – проекция силы $\bar{F}$ на направление вектора скорости ( $\bar{v}$).

{k} \bar{F}_{i} \cdot \bar{v}_{i}(5)$$

где $\bar{v}_{i}$ – скорость перемещения точки, к которой приложена сила $\bar{F}_{i}$.

В случае поступательного движения твердого тела со скоростью $\bar{v}$ мощность можно определить при помощи формулы:

$$P=\overline{F v}(6)$$

где $\bar{F}$ – главный вектор внешних сил.

Если твердое тело совершает вращение вокруг точки О или вокруг неподвижной оси, которая проходит через точку О, то формулой для счет мощности можно считать выражение:

$$P=\bar{M} \bar{\omega}(7)$$

где $\bar{M}$ – главный момент внешних сил по отношению к точке О, $\bar{omega}$ – мгновенная угловая скорость вращения тела.

Единицы измерения мощности

Основной единицей измерения мощности силы в системе СИ является: [P]=вт (ватт)

В СГС: [P]=эрг/с.

1 вт=107 эрг/( с).

Примеры решения задач

Пример

Задание.

Какова мощность (P(t)), развиваемая силой, если она действует на тело, которое имее

Мощность, формула мощности, мощность определение

      Здравствуйте! Для вычисления физической величины, называемой мощностью, пользуются формулой, где физическую величину — работу делят на время, за которое эта работа производилась.

Выглядит она так:

P, W, N=A/t, (Вт=Дж/с).

     В зависимости от учебников и разделов физики, мощность в формуле может обозначаться буквами P, W или N.

Чаще всего мощность применяется, в таких разделах физики и науки, как механика, электродинамика и электротехника. В каждом случае, мощность имеет свою формулу для вычисления. Для переменного и постоянного тока она тоже различна. Для измерения мощности используют ваттметры.

     Теперь вы знаете, что мощность измеряется в ваттах. По-английски ватт — watt, международное обозначение — W, русское сокращение — Вт. Это важно запомнить, потому что во всех бытовых приборах есть такой параметр.

     Мощность — скалярная величина, она не вектор, в отличие от силы, которая может иметь направление. В механике, общий вид формулы мощности можно записать так:

P=F*s/t, где F=А*s,

v=s/t,

Р=F*v.

     Из формул видно, как мы вместо А подставляем силу F умноженную на путь s. В итоге мощность в механике, можно записать, как силу умноженную на скорость. К примеру, автомобиль имея определенную мощность, вынужден снижать скорость при движении в гору, так как это требует большей силы.

     Средняя мощность человека принята за 70-80 Вт. Мощность автомобилей, самолетов, кораблей, ракет и промышленных установок, часто, измеряют в лошадиных силах. Лошадиные силы применяли еще задолго до внедрения ватт. Одна лошадиная сила равна 745,7Вт. Причем в России принято что л. с. равна 735,5 Вт.

     Если вас вдруг случайно спросят через 20 лет в интервью среди прохожих о мощности, а вы запомнили, что мощность — это отношение работы А, совершенной в единицу времени t. Если сможете так сказать, приятно удивите толпу. Ведь в этом определении, главное запомнить, что делитель здесь работа А, а делимое время t. В итоге, имея работу и время, и разделив первое на второе, мы получим долгожданную мощность.

     При выборе в магазинах, важно обращать внимание на мощность прибора.

Чем мощнее чайник, тем быстрее он погреет воду. Мощность кондиционера определяет, какой величины пространство он сможет охлаждать без экстремальной нагрузки на двигатель. Чем больше мощность электроприбора, тем больше тока он потребляет, тем больше электроэнергии потратит, тем больше будет плата за электричество.

     В общем случае электрическая мощность определяется формулой:

W=I*U,

где I — сила тока, U-напряжение

    Иногда даже ее так и измеряют в вольт-амперах, записывая, как В*А. В вольт-амперах меряют полную мощность, а чтобы вычислить активную мощность нужно полную мощность умножить на коэффициент полезного действия(КПД) прибора, тогда получим активную мощность в ваттах.

    Часто такие приборы, как кондиционер, холодильник, утюг работают циклически, включаясь и отключаясь от термостата, и их средняя мощность за общее время работы может быть небольшой.

    В цепях переменного тока, помимо понятия мгновенной мощности, совпадающей с общефизической, существуют активная, реактивная и полная мощности. Полная мощность равна сумме активной и реактивной мощностей.

    Для измерения мощности используют электронные приборы — Ваттметры. Единица измерения Ватт, получила свое название в честь изобретателя усовершенствованной паровой машины, которая произвела революцию среди энергетических установок того времени. Благодаря этому изобретению развитие индустриального общества ускорилось, появились поезда, пароходы, заводы, использующие силу паровой машины для передвижения и производства изделий.


Механическая работа и мощность 🐲 СПАДИЛО.РУ

Второй закон Ньютона в импульсной форме позволяет определить, как меняется скорость тела по модулю и направлению, если в течение некоторого времени на него действует определенная сила:

Работа силы

В механике также важно уметь вычислять изменение скорости по модулю, если при перемещении тела на некоторый отрезок на него действует некоторая сила. Воздействия на тела сил, приводящих к изменению модуля их скорости, характеризуется величиной, зависящей как от сил, так и от перемещений. Эту величину в механике называют работой силы.

Работа силы обозначается буквой А. Это скалярная физическая величина. Единица измерения — Джоуль (Дж).

Работа силы равна произведению модуля силы, модуля перемещения и косинусу угла между ними:

Важно!

Механическая работа совершается, если:

  1. На тело действует сила.
  2. Под действием этой силы тело перемещается.
  3. Угол между вектором силы и вектором перемещения не равен 90 градусам (потому что косинус прямого угла равен нулю).

Внимание! Если к телу приложена сила, но под ее действием тело не начинает движение, механическая работа равна нулю.

Пример №1. Груз массой 1 кг под действием силы 30 Н, направленной вертикально вверх, поднимается на высоту 2 м. Определить работу, совершенной этой силой.

Так как перемещение и вектор силы имеют одно направление, косинус угла между ними равен единице. Отсюда:

Работа различных сил

Любая сила, под действием которой перемещается тело, совершает работу. Рассмотрим работу основных сил в таблице.

Работа силы тяжести

Модуль силы тяжести: Fтяж = mg

Работа силы тяжести: A = mgs cosα

Работа силы трения скольжения

Модуль силы трения скольжения: Fтр = μN = μmg

Работа силы трения скольжения: A = μmgs cosα

Работа силы упругости

Модуль силы упругости: Fупр = kx

Работа силы упругости:

Работа силы упругости

Работа силы упругости не может быть определена стандартной формулой, так как она может применяться только для постоянной по модулю силы. Сила же упругости меняется по мере сжатия или растяжения пружины. Поэтому берется среднее значение, равное половине суммы сил упругости в начале и в конце сжатия (растяжения):

Нужно также учесть, что перемещение тела под действием силы упругости равно разности удлинения пружины в начале и конце:

s = x1 – x2

Перемещение и направление силы упругости всегда сонаправлены, поэтому угол между ними нулевой. А косинус нулевого угла равен 1. Отсюда работа силы упругости равна:

Работы силы трения покоя

Работы силы трения покоя всегда равна 0, так как под действием этой силы тело не сдвигается с места. Исключение составляет случай, когда покоящееся тело лежит на подвижном предмете, на который действует некоторая сила. Относительно системы координат, связанной с подвижным предметом, работа силы трения покоя будет нулевой. Но относительно системы отсчета, связанной с Землей, эта сила будет совершать работу, так как тело будет двигаться, оставаясь на поверхности движущегося предмета.

Пример №2. Груз массой 100 кг волоком перетащили на 10 м по плоскости, поверхность которой имеет коэффициент трения 0,4. Найти работу, совершенной силой трения скольжения.

A = μmgs cosα = 0,4∙100∙10∙10∙(–1) = –4000 (Дж) = –4 (кДж)

Знак работы силы

Знак работы силы определяется только косинусом угла между вектором силы и вектором перемещения:

  1. Если α = 0о, то cosα = 1.
  2. Если 0о < α < 90o, то cosα > 0.
  3. Если α = 90о, то cosα = 0.
  4. Если 90о < α < 180o, то cosα < 0.
  5. Если α = 180о, то cosα = –1.

Работа силы трения скольжения всегда отрицательна, так как сила трения скольжения направлена противоположно перемещению тела (угол равен 180

о). Но в геоцентрической системе отсчета работа силы трения покоя будет отличной от нуля и выше нуля, если оно будет покоиться на движущемся предмете (см. рис. выше). В таком случае сила трения покоя будет направлена с перемещением относительно Земли в одну сторону (угол равен 0о). Это объясняется тем, что тело по инерции будет пытаться сохранить покой относительно Земли. Это значит, что направление возможного движения противоположно движению предмета, на котором лежит это тело. А сила трения покоя направлена противоположно направлению возможного движения.

Геометрический смысл работы

Графическое определение

Механическая работа численно равна площади фигуры, ограниченной графиком с осями OF и OX.

A = Sфиг

Мощность

Определение

Мощность — физическая величина, показывающая, какую работу совершает тело в единицу времени. Мощность обозначается буквой N. Единица измерения: Ватт (Вт). Численно мощность равна отношению работы A, совершенной телом за время t:

Рассмотрим частные случаи определения мощности в таблице.

Пример №3. Машина равномерно поднимает груз массой 10 кг на высоту 20 м за 40 с. Чему равна ее мощность?

Коэффициент полезного действия

Не вся работа, совершаемая телами, может быть полезной. В реальном мире на тела действует несколько сил, препятствующих совершению работы другой силой. К примеру, чтобы переместить груз на некоторое расстояние, нужно совершить работу гораздо большую, чем можно получить при расчете по формулам выше.

Определения:

  • Работа затраченная — полная работа силы, совершенной над телом (или телом).
  • Работа полезная — часть полной работы силы, которая вызывает непосредственно перемещение тела.
  • Коэффициент полезного действия (КПД) — процентное отношение полезной работы к работе затраченной. КПД обозначается буквой «эта» — η. Единицы измерения эта величина не имеет. Она показывает эффективность работы механизма или другой системы, совершающей работу, в процентах.

КПД определяется формулой:

Работа может определяться как произведение мощности на время, в течение которого совершалась работа:

A = Nt

Поэтому формулу для вычисления КПД можно записать в следующем виде:

Частые случаи определения КПД рассмотрим в таблице ниже:

Устройство
Работа полезная и полная
КПД
Неподвижный блок, рычаг

Aполезн = mgh

Асоверш.

Наклонная плоскость

Aполезн = mgh

Асоверш. = Fl

l — совершенный путь (длина наклонной плоскости).

Пример №4. Определите полезную мощность двигателя, если его КПД равен 40%, а его мощность по паспорту равна 100 кВт.

В данном случае необязательно переводить единицы измерения в СИ. Но в таком случае ответ мы тоже получим в кВт. Из этой формулы выразим полезную мощность:

Что такое Ватт

Ватт (обозначение: Вт, W) — в системе СИ единица измерения мощности. Единица названа в честь шотландско-ирландского изобретателя-механика Джеймса Уатта (Ватта), создателя универсальной паровой машины.

Ватт как единица измерения мощности был впервые принят на Втором Конгрессе Британской Научной ассоциации в 1889 году. До этого при большинстве расчётов использовались введённые Джеймсом Уаттом лошадиные силы, а также фут-фунты в минуту. На XIX Генеральной конференции по мерам и весам в 1960 году ватт был включён в Систему Интернациональную.

Одной из основных характеристик всех электроприборов является потребляемая ими мощность, поэтому на любом электроприборе (или в инструкции к нему) можно найти информацию о количестве ватт, необходимых для его работы.

Что такое Ватт. Определение

1 ватт определяется как мощность, при которой за 1 секунду времени совершается работа в 1 джоуль.

Таким образом, ватт является производной единицей измерения и связан с другими единицами СИ следующими соотношениями:

Вт = Дж / с = кг·м²/с³

Вт = H·м/с

Вт = В·А

Кроме механической (определение которой приведено выше), различают ещё тепловую и электрическую мощность:

1 ватт мощности теплового потока эквивалентен механической мощности в 1 ватт.

1 ватт активной электрической мощности также эквивалентен механической мощности в 1 ватт и определяется как мощность постоянного электрического тока силой 1 ампер, совершающего работу при напряжении 1 вольт.

Перевод в другие единицы измерения мощности

Ватт связан с другими единицами измерения мощности следующими соотношениями:

1 Вт = 107 эрг/с

1 Вт ≈ 0,102 кгс·м/с

1 Вт ≈ 1,36×10−3 л. с.

1 кал/ч = 1.163×10−3 Вт

 

Чем киловатт отличается от киловатт-часа?

Приставка «кило» перед любой величиной измерения (ватты, амперы, вольты, граммы и т.д.) означает «тысяча».

1 киловатт (кВт) = 1000 ватт (Вт).

Ватт — единица измерения мощности. Мощность — это скорость с которой расходуется энергия. Один ватт равен мощности, при которой работа (энергетические затраты) объемом один джоуль осуществляется за одну секунду.

Киловатт-час — единица измерения, используемая для измерения электроэнергии в быту. Означает количество энергии, которую устройство мощностью 1 киловатт производит/потребляет в течение одного часа.

Ватт/киловатт и киловатт-час — разные понятия. 

В ваттах/киловаттах (Вт) измеряется мощность
В киловатт-часах (кВт•ч) измеряется количество потребленной электроэнергии
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Не можешь написать работу сам?

Доверь её нашим специалистам

от 100 р.стоимость заказа

2 часамин. срок

Узнать стоимость

формула, правила расчета, виды и классификация электродвигателей

В электромеханике существует много приводов, которые работают с постоянными нагрузками без изменения скорости вращения. Их используют в промышленном и бытовом оборудовании как, например, вентиляторы, компрессоры и другие. Если номинальные характеристики неизвестны, то для расчетов используют формулу мощности электродвигателя. Вычисления параметров особенно актуальны для новых и малоизвестных приводов. Калькуляция выполняется с использованием специальных коэффициентов, а также на основе накопленного опыта работы с подобными механизмами. Данные необходимы для правильной эксплуатации электрических установок.

Что такое электродвигатель?

Электрический двигатель представляет собой устройство, которое преобразует электрическую энергию в механическую. Работа большинства агрегатов зависит от взаимодействия магнитного поля с обмоткой ротора, которая выражается в его вращении. Функционируют они от источников питания постоянного или переменного тока. В качестве питающего элемента может выступать аккумулятор, инвертор или розетка электросети. В некоторых случаях двигатель работает в обратном порядке, то есть преобразует механическую энергию в электрическую. Такие установки находят широкое применение на электростанциях, работающие от потока воздуха или воды.

Электродвигатели классифицируют по типу источника питания, внутренней конструкции, применению и мощности. Также приводы переменного тока могут иметь специальные щетки. Они функционируют от однофазного, двухфазного или трехфазного напряжения, имеют воздушное или жидкостное охлаждение. Формула мощности электродвигателя переменного тока

P = U х I,

где P — мощность, U — напряжение, I — сила тока.

Приводы общего назначения со своими размерами и характеристиками находят применение в промышленности. Самые большие двигатели мощностью более 100 Мегаватт используют на силовых установках кораблей, компрессорных и насосных станций. Меньшего размера используют в бытовых приборах, как пылесос или вентилятор.

Конструкция электрического двигателя

Привод включает в себя:

  • Ротор.
  • Статор.
  • Подшипники.
  • Воздушный зазор.
  • Обмотку.
  • Коммутатор.

Ротор — единственная подвижная деталь привода, которая вращается вокруг своей оси. Ток, проходя через проводники, образует индукционное возмущение в обмотке. Формируемое магнитное поле взаимодействует с постоянными магнитами статора, что приводит в движение вал. Их рассчитывают по формуле мощности электродвигателя по току, для которой берется КПД и коэффициент мощности, в том числе все динамические характеристики вала.

Подшипники расположены на валу ротора и способствуют его вращению вокруг своей оси. Внешней частью они крепятся к корпусу двигателя. Вал проходит через них и выходит наружу. Поскольку нагрузка выходит за пределы рабочей зоны подшипников, ее называют нависающей.

Статор является неподвижным элементом электромагнитной цепи двигателя. Может включать в себя обмотку или постоянные магниты. Сердечник статора выполнен из тонких металлических пластин, которые называют пакетом якоря. Он призван снижать потери энергии, что часто происходит с твердыми стержнями.

Воздушный зазор — расстояние между ротором и статором. Эффективным является небольшой промежуток, так как он влияет на низкий коэффициент работы электродвигателя. Ток намагничивания растет с увеличением размера зазора. Поэтому его всегда стараются делать минимальным, но до разумных пределов. Слишком маленькое расстояние приводит к трению и ослаблению фиксирующих элементов.

Обмотка состоит из медной проволоки, собранной в одну катушку. Обычно укладывается вокруг мягкого намагниченного сердечника, состоящего из нескольких слоев металла. Возмущение индукционного поля происходит в момент прохождения тока через провода обмотки. В этот момент установка переходит в режим конфигурации с явными и неявными полюсами. В первом случае магнитное поле установки создает обмотка вокруг полюсного наконечника. Во втором случае, в распределенном поле рассредотачивается слотов полюсного наконечника ротора. Двигатель с экранированными полюсами имеет обмотку, которое сдерживает магнитное возмущение.

Коммутатор используют для переключения входного напряжения. Состоит из контактных колец, расположенных на валу и изолированных друг от друга. Ток якоря подается на щетки контактов ротационного коммутатора, который приводит к изменению полярности и заставляет вращаться ротор от полюса к полюсу. При отсутствии напряжения мотор прекращает крутиться. Современные установки оборудованы дополнительными электронным средствами, которые контролируют процесс вращения.

Принцип действия

По закону Архимеда ток в проводнике создает магнитное поле, в котором действует сила F1. Если из этого проводника изготовить металлическую рамку и поместить ее в поле под углом 90°, то края будут испытывать силы, направленные в противоположную сторону относительно друг друга. Они создают крутящий момент относительно оси, который начинает ее вращать. Витки якоря обеспечивают постоянное кручение. Поле создается электрическими или постоянными магнитами. Первый вариант выполнен в виде обмотки катушки на стальном сердечнике. Таким образом, ток рамки генерирует индукционное поле в обмотке электромагнита, которое порождает электродвижущую силу.

Рассмотрим более подробно работу асинхронных двигателей на примере установок с фазным ротором. Такие машины работают от переменного тока с частотой вращения якоря, не равной пульсации магнитного поля. Поэтому их еще называют индукционными. Ротор приводится в движение за счет взаимодействия электрического тока в катушках с магнитным полем.

Когда во вспомогательной обмотке отсутствует напряжение, устройство находится в состоянии покоя. Как только на контактах статора появляется электрический ток, образуется постоянное в пространстве магнитное поле с пульсацией +Ф и -Ф. Его можно представить в виде следующей формулы:

nпр = nобр = f1 × 60 ÷ p = n1

где:

nпр — количество оборотов, которое совершает магнитное поле в прямом направлении, об/мин;

nобр — число оборотов поля в обратном направлении, об/мин;

f1 — частота пульсации электрического тока, Гц;

p — количество полюсов;

n1 — общее число оборотов в минуту.

Испытывая пульсации магнитного поля, ротор получает начальное движение. По причине неоднородности воздействия потока, он будет развиваться крутящий момент. По закону индукции, в короткозамкнутой обмотке образуется электродвижущая сила, которая генерирует ток. Его частота пропорциональна скольжению ротора. Благодаря взаимодействию электрического тока с магнитным полем создается крутящий момент вала.

Для расчетов производительности существуют три формулы мощности асинхронного электродвигателя. По сдвигу фаз используют

S = P ÷ cos (alpha), где:

S — полная мощность, измеряемая в Вольт-Амперах.

P — активная мощность, указываемая в Ваттах.

alpha — сдвиг фаз.

Под полной мощностью понимаются реальный показатель, а под активной — расчетный.

Виды электродвигателей

По источнику питания приводы разделяют на работающие от:

  • Постоянного тока.
  • Переменного тока.

По принципу работы их, в свою очередь, делят на:

  • Коллекторные.
  • Вентильные.
  • Асинхронные.
  • Синхронные.

Вентильные двигатели не относят к отдельному классу, так как их устройство является вариацией коллекторного привода. В их конструкцию входит электронный преобразователь и датчик положения ротора. Обычно их интегрируют вместе с платой управления. За их счет происходит согласованная коммутация якоря.

Синхронные и асинхронные двигатели работают исключительно от переменного тока. Управление оборотами происходит с помощью сложной электроники. Асинхронные делятся на:

  • Трехфазные.
  • Двухфазные.
  • Однофазные.

Теоретическая формула мощности трехфазного электродвигателя при соединении в звезду или треугольником

P = 3 * Uф * Iф * cos(alpha).

Однако для линейных значений напряжения и тока она выглядит как

P = 1,73 × Uф × Iф × cos(alpha).

Это будет реальный показатель, сколько мощности двигатель забирает из сети.

Синхронные подразделяются на:

  • Шаговые.
  • Гибридные.
  • Индукторные.
  • Гистерезисные.
  • Реактивные.

В своей конструкции шаговые двигатели имеют постоянные магниты, поэтому их не относят к отдельной категории. Управление работой механизмов производится с помощью частотных преобразователей. Существуют также универсальные двигатели, которые функционируют от постоянного и переменного тока.

Общие характеристики двигателей

Все моторы имеют общие параметры, которые используются в формуле определения мощности электродвигателя. На их основе можно рассчитать свойства машины. В разной литературе они могут называться по-разному, но означают они одно и то же. В список таких параметров входит:

  • Крутящий момент.
  • Мощность двигателя.
  • Коэффициент полезного действия.
  • Номинальное количество оборотов.
  • Момент инерции ротора.
  • Расчетное напряжение.
  • Электрическая константа времени.

Вышеуказанные параметры необходимы, прежде всего, для определения эффективности электрических установок, работающих за счет механической силы двигателей. Расчетные величины дают лишь приблизительное представление о реальных характеристиках изделия. Однако эти показатели часто используют в формуле мощность электродвигателя. Именно она определяет результативность машин.

Вращательный момент

Этот термин имеет несколько синонимов: момент силы, момент двигателя, Вращательный момент, вертящий момент. Все они используются для обозначения одного показателя, хотя с точки зрения физики эти понятия не всегда тождественны.

В целях унификации терминологии были разработаны стандарты, которые приводят все к единой системе. Поэтому в технической документации всегда используются словосочетание «крутящий момент». Он представляет собой векторную физическую величину, которая равна произведению векторных значений силы и радиуса. Вектор радиуса проводится от оси вращения к точке приложенной силы. С точки зрения физики разница между крутящим и вращательным моментом заключается в точке прикладывания силы. В первом случае это внутреннее усилие, во втором — внешнее. Измеряется величина в ньютон-метрах. Однако в формуле мощности электродвигателя крутящий момент используется как основное значение.

Рассчитывается он как

M = F × r, где:

M — крутящий момент, Нм;

F — прикладываемая сила, H;

r — радиус, м.

Для расчета номинального вращающего момента привода используют формулу

Мном = 30Рном ÷ pi × нном, где:

Рном — номинальная мощность электрического двигателя, Вт;

нном — номинальное число оборотов, мин-1.

Соответственно, формула номинальной мощности электродвигателя бедует выглядеть следующим образом:

Рном = Мном * pi*нном / 30.

Обычно все характеристики указаны в спецификации. Но бывает, что приходится работать с совершенно новыми установками, информацию о которых найти очень сложно. Для расчета технических параметров таких устройств берут данные их аналогов. Также всегда известны только номинальные характеристики, которые даются в спецификации. Реальные данные необходимо рассчитывать самостоятельно.

Мощность двигателя

В общем смысле данный параметр представляет собой скалярную физическую величину, которая выражена в скорости потребления или преобразования энергии системы. Он показывает, какую работу механизм выполнит за определенную единицу времени. В электротехнике характеристика отображает полезную механическую мощность на центральном вале. Для обозначения показателя используют литеру P или W. Основной единицей измерения является Ватт. Общая формула расчета мощности электродвигателя может быть представлена как:

P = dA ÷ dt, где:

A — механическая (полезная) работа (энергия), Дж;

t — затраченное время, сек.

Механическая работа также является скалярной физической величиной, выражаемой действием силы на объект, и зависящей от направления и перемещения этого объекта. Она представляет собой произведение вектора силы на путь:

dA = F × ds, где:

s — пройденное расстояние, м.

Она выражает дистанцию, которую преодолеет точка приложенной силы. Для вращательных движений она выражается как:

ds = r × d(teta), где:

teta — угол оборота, рад.

Таким образом можно вычислить угловую частоту вращения ротора:

omega = d(teta) ÷ dt.

Из нее следует формула мощности электродвигателя на валу: P = M × omega.

Коэффициент полезного действия электромотора

КПД — это характеристика, которая отражает эффективность работы системы при преобразовании энергии в механическую. Выражается отношением полезной энергии к потраченной. По единой системе единиц измерений он обозначается как «eta» и является безразмерным значением, исчисляемым в процентах. Формула КПД электродвигателя через мощность:

eta = P2 ÷ P1, где:

P1 — электрическая (подаваемая) мощность, Вт;

P2 — полезная (механическая) мощность, Вт;

Также он может быть выражен как:

eta = A ÷ Q × 100 %, где:

A — полезная работа, Дж;

Q — затраченная энергия, Дж.

Чаще коэффициент вычисляют по формуле потребляемой мощности электродвигателя, так как эти показатели всегда легче измерить.

Снижение эффективности работы электродвигателя происходит по причине:

  • Электрических потерь. Это происходит в результате нагрева проводников от прохождения по ним тока.
  • Магнитных потерь. Вследствие излишнего намагничивания сердечника появляется гистерезис и вихревые токи, что важно учитывать в формуле мощности электродвигателя.
  • Механических потерь. Они связаны с трением и вентиляцией.
  • Дополнительных потерь. Они появляются из-за гармоник магнитного поля, так как статор и ротор имеют зубчатую форму. Также в обмотке присутствуют высшие гармоники магнитодвижущей силы.

Следует отметить, что КПД является одним из самых важных компонентов формулы расчета мощности электродвигателя, так как позволяет получить цифры, наиболее приближенные к действительности. В среднем этот показатель варьирует от 10% до 99%. Она зависит от конструктивного устройства механизма.

Номинальное количество оборотов

Еще одним ключевым показателем электромеханических характеристик двигателя является частота вращения вала. Он выражается в числе оборотов в минуту. Часто его используют в формуле мощности электродвигателя насоса, чтобы узнать его производительность. Но необходимо помнить, что показатель всегда разный для холостого хода и работы под нагрузкой. Показатель представляет физическую величину, равной количеству полных оборотов за некий промежуток времени.

Расчетная формула частоты оборотов:

n = 30 × omega ÷ pi, где:

n — частота вращения двигателя, об/мин.

Для того, чтобы найти мощность электродвигателя по формуле оборотистости вала, необходимо привести ее к расчету угловой скорости. Поэтому P = M × omega будет выглядеть следующим образом:

P = M × (2pi × n ÷ 60) = M × (n ÷ 9,55), где

t = 60 секунд.

Момент инерции

Этот показатель представляет собой скалярную физическую величину, которая отражает меру инертности вращательного движения вокруг собственной оси. При этом масса тела является величиной его инертности при поступательном движении. Основная характеристика параметра выражена распределением масс тела, которая равна сумме произведений квадрата расстояния от оси до базовой точки на массы объекта. В Международной системе единиц измерения он обозначается как кг·м2 и имеет рассчитывается по формуле:

J = ∑ r2 × dm, где

J — момент инерции, кг·м2 ;

m — масса объекта, кг.

Моменты инерции и силы связаны между собой соотношением:

M — J × epsilon, где

epsilon — угловое ускорение, с-2.

Показатель рассчитывается как:

epsilon = d(omega) × dt.

Таким образом, зная массу и радиус ротора, можно рассчитать параметры производительности механизмов. Формула мощности электродвигателя включает в себя все эти характеристики.

Расчетное напряжение

Его еще называют номинальным. Оно представляет собой базовое напряжение, представленное стандартным набором вольтажа, которые определяется степенью изоляции электрического оборудования и сети. В действительности оно может отличаться в разных точках оборудования, но не должно превышать предельно допустимых норм рабочих режим, рассчитанных на продолжительное функционирование механизмов.

Для обычных установок под номинальным напряжением понимают расчетные величины, для которых они предусмотрены разработчиком в нормальном режиме работы. Перечень стандартного вольтажа сети предусмотрен в ГОСТ. Эти параметры всегда описаны в технических характеристиках механизмов. Для расчета производительности используют формулу мощности электродвигателя по току:

P = U × I.

Электрическая константа времени

Представляет собой время, необходимое для достижения уровня тока до 63 % после подачи напряжения на обмотки привода. Параметр обусловлен переходными процессами электромеханических характеристик, так как они быстротечны ввиду большого активного сопротивления. Общая формула расчета постоянной времени:

te = L ÷ R.

Однако электромеханическая константа времени tm всегда больше электромагнитной te. Первый параметр получается из уравнения динамических характеристики двигателя при сохранении условии, когда ротор разгоняется с нулевой скоростью до максимальных оборотов холостого хода. В этом случае уравнение принимает вид

M = Mст + J × (d(omega) ÷ dt), где

Mст = 0.

Отсюда получаем формулу:

M = J × (d(omega) ÷ dt).

По факту электромеханическую константу времени рассчитывают по пусковому момент — Mп. Механизм, работающий в идеальных условиях, с прямолинейными характеристиками будем иметь формулу:

M = Mп × (1 — omega ÷ omega0), где

omega0 — скорость на холостом ходу.

Такие расчеты используют в формуле мощности электродвигателя насоса, когда ход поршня напрямую зависит от оборотистости вала.

Основные формулы расчета мощности двигателей

Для вычисления реальных характеристик механизмов всегда нужно учитывать много параметров. в первую очередь нужно знать, какой ток подается на обмотки электродвигателя: постоянный или переменный. Принцип их работы отличается, следовательно, отличаются метод вычислений. Если упрощенный вид расчета мощности привода выглядит как:

Pэл = U × I, где

I — сила тока, А;

U — напряжение, В;

Pэл — подведенная электрическая мощность. Вт.

В формуле мощности электродвигателя переменного тока необходимо также учитывать сдвиг фаз (alpha). Соответственно, расчеты для асинхронного привода выглядят как:

Pэл = U × I × cos(alpha).

Кроме активной (подведенной) мощности существует также:

  • S — реактивная, ВА. S = P ÷ cos(alpha).
  • Q — полная, ВА. Q = I × U × sin(alpha).

В расчетах также необходимо учитывать тепловые и индукционные потери, а также трение. Поэтому упрощенная модель формулы для электродвигателя постоянного тока выглядит как:

Pэл = Pмех + Ртеп +Ринд + Ртр, где

Рмех — полезная вырабатываемая мощность, Вт;

Ртеп — потери на образование тепла, ВТ;

Ринд — затраты на заряд в индукционной катушке, Вт;

Рт — потери в результате трения, Вт.

Заключение

Электродвигатели находят применение практически во всех областях жизни человека: в быту, в производстве. Для правильного использования привода необходимо знать не только его номинальные характеристики, но и реальные. Это позволит повысить его эффективность и снизить затраты.

Активная, реактивная и полная мощность

В отличии от сетей постоянного тока, где мощность имеет выражение    и не изменяется во времени, в сетях переменного тока это не так.

Мощность в цепи переменного тока также есть переменной величиной. На любом участке цепи в любой момент времени t она определяется  как  произведение мгновенных значений напряжения и тока.

Рассмотрим, что представляет активная мощность

В цепи с чисто активным сопротивлением она равна:

Если принять  и  тогда выйдет:

Где 

Исходя из выражений выше — активная энергия состоит из двух частей — постоянной  и переменной  , которая меняется с двойной частотой. Среднее ее значение 

График Р(ωt)

Отличие реактивной мощности от активной

В цепи, где есть реактивное сопротивление (возьмем для примера индуктивное) значение мгновенной мощности равно:

Соответственно  и  в итоге получим:

Данное выражение показывает, что реактивная энергия содержит только переменную часть, которая изменяется с двойной частотой, а ее среднее значение равно нулю

График q(ωt)

Если ток и напряжение имеют синусоидальную форму и сеть содержит элементы типа R-L или R-C, то в таких сетях кроме преобразования энергии в активном элементе R вдобавок еще и изменяется энергия электрического и магнитного полей в реактивных элементах L и C.

В таком случае полная мощность сети будет равна сумме:

Что такое полная мощность на примере простой R-L цепи

Графики изменения мгновенных значений u,i:

Графики изменения мгновенных значений u,i:

φ — фазовый сдвиг между током и напряжением

Уравнение для S примет следующий вид 

Подставим вместо  и заменим амплитудные значения на действующие:

Значение S рассматривается как сумма двух величин , где

 и  — мгновенные активные и реактивные мощности на участках R-L.

Графики p,q,s:

Как видим из графика, наличие индуктивной составляющей повлекло за собой появление отрицательной части в полной мощности (заштрихованная часть графика), что снижает ее среднее значение. Это происходит из-за фазового сдвига, в какой-то момент времени ток и напряжение находятся в противофазе, поэтому появляется отрицательное значение S.

Итоговые выражения для действующих значений:

Активная составляющая сети выражается в ваттах (Вт), а реактивная в вольт-амперах реактивных (вар).

Полная мощность сети S, обусловлена номинальными данными генератора. Для генератора она обусловлена выражением:

Для нормальной работы генератора ток в обмотках и напряжение на зажимах не должны превышать номинальные значения Iн, Uн.  Для генератора значения P и S одинаковы, однако все-таки на практике условились S выражать в вольт-амперах (ВА).

Также энергию сети можно выразить через каждую составляющую отдельно:

Где S, P, Q – соответственно активное, реактивное и полное сопротивление сети. Они образуют треугольник мощностей:

Треугольник мощностей с преобладающей индуктивной нагрузкой

Если вспомнить теорему Пифагора, то из прямоугольного треугольника можно получить такое выражение:

Реактивная составляющая в треугольнике является положительной (QL), когда ток отстает от напряжения, и отрицательной (QC), когда опережает:

Треугольник мощностей с преобладающей емкостной нагрузкой

Для реактивной составляющей сети справедливо алгебраическое выражение:

Из чего следует что индуктивная и емкостная энергия взаимозаменяемы. То есть если вы хотите уменьшить влияние индуктивной части цепи, вам необходимо добавить емкость, и наоборот. Ниже пример данной схемы :

Схема компенсации реактивной составляющей

Векторная диаграмма показывает влияние конденсатора на cosφ. Как видно, что при включении конденсатора cosφ2> cosφ1 и  Iл<I.

Векторная диаграмма

Связь между полной и реактивной энергии выражается:

Отсюда:

сosφ – это коэффициент мощности. он показывает какую долю от полной энергии составляет активная энергия. Чем ближе он к 1, тем больше полезной энергии потребляется из сети.

Выводы о трех составляющих цепи переменного тока

В отличии от цепей постоянного тока, цепи переменного напряжения имеют три вида мощности – активная, реактивная, полная. Активная энергия, как и в цепях постоянного тока, выполняет полезную работу. Реактивная – не выполняет ничего полезного, а только снижает КПД сети, греет провода, грузит генератор. Полная – сумма активной и реактивной, она равна мощности сети. Индуктивная составляющая реактивной энергии может быть скомпенсирована емкостной.  На практике в промышленности это реализовано в виде конденсаторных установок.

Что такое вычислительная мощность? | HowStuffWorks

Что делает суперкомпьютер таким суперкомпьютером? Может ли он одним прыжком перепрыгнуть через высокие здания или защитить права невинных? Правда немного приземленнее. Суперкомпьютеры могут очень быстро обрабатывать сложные вычисления.

Как оказалось, в этом секрет вычислительной мощности. Все сводится к тому, насколько быстро машина может выполнять операцию. Все, что делает компьютер, сводится к математике. Процессор вашего компьютера интерпретирует любую выполняемую вами команду как серию математических задач.Более быстрые процессоры могут обрабатывать больше вычислений в секунду, чем более медленные, и они также лучше справляются с действительно сложными вычислениями.

В процессоре вашего компьютера находятся электронные часы. Работа часов — создавать серию электрических импульсов через равные промежутки времени. Это позволяет компьютеру синхронизировать все его компоненты и определять скорость, с которой компьютер может извлекать данные из своей памяти и выполнять вычисления.

Когда вы говорите о том, сколько гигагерц у вашего процессора, вы на самом деле говорите о тактовой частоте .Число указывает, сколько электрических импульсов ваш процессор отправляет каждую секунду. Процессор с частотой 3,2 ГГц отправляет около 3,2 миллиарда импульсов каждую секунду. Хотя можно довести некоторые процессоры до скорости, превышающей заявленные пределы — процесс, называемый разгон , — в конечном итоге часы достигнут своего предела и не будут идти быстрее.

По состоянию на март 2010 года рекорд по вычислительной мощности принадлежит компьютеру Cray XT5 под названием Jaguar. Суперкомпьютер Jaguar может обрабатывать до 2-х файлов.3 квадриллиона вычислений в секунду [источник: Национальный центр вычислительных наук].

Производительность компьютера также можно измерить в операций с плавающей запятой в секунду или операций с плавающей запятой . Современные настольные компьютеры имеют процессоры, которые могут обрабатывать миллиарды операций с плавающей запятой в секунду или гигафлопс. Компьютеры с несколькими процессорами имеют преимущество перед однопроцессорными компьютерами, поскольку каждое ядро ​​процессора может обрабатывать определенное количество вычислений в секунду.Многоядерные процессоры увеличивают вычислительную мощность при меньшем потреблении электроэнергии [источник: Intel]

Даже быстрым компьютерам могут потребоваться годы для выполнения определенных задач. Найти два простых множителя очень большого числа — сложная задача для большинства компьютеров. Во-первых, компьютер должен определить множители большого числа. Затем компьютер должен определить, являются ли множители простыми числами. Для невероятно большого количества это трудоемкая задача. На выполнение вычислений у компьютера может уйти много лет.

Компьютеры будущего могут найти такую ​​задачу относительно простой. Рабочий квантовый компьютер достаточной мощности мог бы параллельно вычислять коэффициенты и затем давать наиболее вероятный ответ всего за несколько секунд. Однако у квантовых компьютеров есть свои проблемы, и они не подходят для всех вычислительных задач, но они могут изменить наше представление о вычислительной мощности.

Узнайте больше о компьютерах и процессорах, перейдя по ссылкам на следующей странице.

различных типов питания

Энергия была важным аспектом человеческой цивилизации с незапамятных времен. Власть может быть физической, политической или социальной. В контексте бизнеса динамика власти, как правило, сильно влияет на решения и транзакции людей. Таким образом, определение силы может быть трудным, поскольку ее понимают и интерпретируют по-разному, однако власть определенно нельзя назвать силой, которая дает вам то, что вы хотите.Власть в основном исходит из положения или авторитета, которые могут влиять на людей как положительно, так и отрицательно.

Для простоты и понимания мощность обычно классифицируется по следующим категориям:

  1. Принуждение — Этот вид силы предполагает использование угрозы, чтобы заставить людей делать то, что они хотят. В организационной структуре это означает угрозу кому-либо переводом, увольнением, понижением в должности и т. Д., По сути, это вынуждает людей подчиняться чьему-либо требованию из страха что-то потерять.
  2. Сила вознаграждения — Как следует из названия, этот тип силы использует награды, льготы, новые проекты или возможности обучения, лучшие роли и денежные выгоды для влияния на людей. Однако интересным аспектом этого типа власти является то, что она сама по себе недостаточно мощна, поскольку решения, связанные с вознаграждением, не принимаются исключительно лицом, обещающим их, потому что в организациях многие другие люди вступают в игру, например, старшие менеджеры. и доска.
  3. Законная власть — Эта власть проистекает из официального положения, занимаемого кем-либо, будь то в организации, бюрократии или правительстве и т. Д.Срок действия этой силы недолговечен, так как человек может использовать ее только до тех пор, пока он / она не будет занимать эту должность, а также объем власти невелик, поскольку он строго определяется занимаемой должностью.
  4. Сила эксперта — Это личный вид силы, который обязан своим происхождением навыкам и опыту, которыми обладает человек, более высокого качества и труднодоступен. В такой ситуации человек может использовать силу знания, чтобы влиять на людей.Так как это очень индивидуально, и навыки можно со временем улучшить; у него больше доверия и уважения.
  5. Сила референта — Это сила, которой обладают знаменитости и кинозвезды, поскольку у них огромное количество поклонников в массах, которые любят их, идентифицируют себя с ними и следуют за ними. Следовательно, они оказывают длительное влияние на большое количество людей для принятия большого количества решений; нравится, из какой машины покупать, какому кандидату выбрать на более высокую должность в стране.

Итак, мощность можно определить по-разному, однако важно то, как ее используют люди, которые ею обладают.В организационном контексте необходимо тщательно управлять динамикой власти и уравнениями, поскольку они оказывают огромное влияние на мотивацию и уровень вовлеченности сотрудников. Он также определяет культуру организации в целом и взаимодействие людей внутри организации в частности. Организации с очень высокой иерархией и властью трудно приспосабливаться к новым и инновационным идеям, любые изменения категорически отвергаются, столкновения эго и меньшие возможности становятся доступными для высокопроизводительных сотрудников, что замедляет рост организации.С другой стороны, в организации с плоской структурой людей поощряют вводить новшества и исследовать, тем самым привнося новые концепции и идеи для ускорения роста и расширения организации.


Power Set

Power Set — это набор из всех подмножеств набора .

ОК? Понял? Может пример поможет …

Все подмножества

Для набора {a, b, c}:

  • Пустой набор {} является подмножеством {a, b, c}
  • И это подмножества: {a}, {b} и {c}
  • И это также подмножества: {a, b}, {a, c} и {b, c}
  • И {a, b, c} является подмножеством {a, b, c}

И в итоге получаем Power Set из {a, b, c}:

P (S) = {{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

Думайте об этом как о различных способах выбора элементов (порядок элементов не имеет значения), включая выбор ни одного или всех.

Пример: В магазине есть банановое, шоколадное и лимонное мороженое.

Что вы заказываете?

  • Совсем ничего: {}
  • Или, может быть, просто банан: {банан}. Или просто {шоколад} или просто {лимон}
  • Или два вместе: {банан, шоколад} или {банан, лимон} или {шоколад, лимон}
  • Или все три! {банан, шоколад, лимон}

Вопрос: если в магазине есть еще и клубничный вкус, какие у вас варианты? Решение позже .

Сколько подмножеств

Легко! Если в исходном наборе n элементов, то в Power Set будет 2 n элементов

Пример: {a, b, c} имеет три члена ( a , b и c ).

Итак, Power Set должен иметь 2 3 = 8, что и имеет место, как мы разработали ранее.

Обозначение

Количество членов набора часто записывается как | S |, поэтому, когда S имеет n членов, мы можем написать:

| P (S) | = 2 п


Пример: для набора S = {1,2,3,4,5} сколько элементов будет иметь набор мощности?

Ну, у S 5 участников, поэтому:

| P (S) | = 2 n = 2 5 = 32

Через минуту вы увидите, почему количество членов равно 2

Это двоичный!

А вот и самое удивительное.Чтобы создать Power Set, запишите последовательность двоичных чисел (используя n цифр), а затем позвольте «1» означать «поместить соответствующий элемент в это подмножество».

Таким образом, «101» заменяется на 1 a , 0 b и 1 c , чтобы получить нас {a, c}

Как это:

abc Подмножество
0 000 {}
1 001 {c}
2 010 {b}
3 011 {b, c}
4 100 {a}
5 101 {a, c}
6 110 {a, b}
7 111 {a, b, c}

Ну, они не в хорошем порядке, но все они есть.

Другой пример

Едем! У нас есть четыре вкуса мороженого: банан, шоколад, лимон и клубника . Сколько разных способов получить их?

Давайте использовать буквы для ароматов: {b, c, l, s}. Примеры выбора включают:

  • {} (ничего, вы на диете)
  • {b, c, l, s} (любой вкус)
  • {b, c} (банан и шоколад хороши вместе)
  • и т. Д.
Составим таблицу «бинарной»:

Что такое Power Apps? — Power Apps

  • 2 минуты на чтение

В этой статье

Power Apps — это набор приложений, служб, соединителей и платформы данных, который обеспечивает среду быстрой разработки приложений для создания пользовательских приложений для нужд вашего бизнеса.Используя Power Apps, вы можете быстро создавать настраиваемые бизнес-приложения, которые подключаются к вашим бизнес-данным, хранящимся или на базовой платформе данных (Microsoft Dataverse), или в различных сетевых и локальных источниках данных (SharePoint, Microsoft 365, Dynamics 365 , SQL Server и т. Д.).

Приложения

, созданные с использованием Power Apps, предоставляют богатую бизнес-логику и возможности рабочего процесса для преобразования ваших ручных бизнес-процессов в цифровые, автоматизированные процессы. Кроме того, приложения, созданные с использованием Power Apps, имеют адаптивный дизайн и могут без проблем работать в браузере или на мобильных устройствах (телефоне или планшете).Power Apps «демократизирует» процесс создания пользовательских бизнес-приложений, позволяя пользователям создавать многофункциональные пользовательские бизнес-приложения без написания кода.

Power Apps также предоставляет расширяемую платформу, которая позволяет профессиональным разработчикам программно взаимодействовать с данными и метаданными, применять бизнес-логику, создавать настраиваемые соединители и интегрироваться с внешними данными.

Для доп. Информации:

Power Apps для разработчиков и разработчиков приложений

Используя Power Apps, вы можете создавать три типа приложений: холст , управляемый моделью и портал .Дополнительные сведения: Обзор создания приложений в Power Apps.

Чтобы создать приложение, вы начинаете с make.powerapps.com.

  • Power Apps Studio — конструктор приложений, используемый для создания приложений холста. Благодаря конструктору приложений создание приложений больше похоже на сборку слайдов в Microsoft PowerPoint. Дополнительные сведения: Создание приложения из данных

  • Конструктор приложений для приложений на основе модели позволяет определить карту сайта и добавить компоненты для создания приложения на основе модели.Дополнительные сведения: Создание приложений на основе моделей с помощью конструктора приложений

  • Порталы Power Apps Studio — это средство проектирования WYSIWYG для добавления и настройки веб-страниц, компонентов, форм и списков. Дополнительные сведения: Порталы Power Apps Studio anatomy

Готовы превратить свои идеи в приложение? Начните здесь: планирование проекта Power Apps

Power Apps для пользователей приложений

Вы можете запускать приложения, созданные вами или кем-то другим, в браузере или на мобильных устройствах (телефоне или планшете).Дополнительная информация:

Power Apps для администраторов

Администраторы

Power Apps могут использовать центр администрирования Power Platform (admin.powerplatform.microsoft.com) для создания сред и управления ими, получения в реальном времени рекомендаций по самопомощи и поддержки для Power Apps и Power Automate, а также для просмотра аналитики Dataverse. Дополнительная информация: Администрирование Power Platform

Power Apps для разработчиков

Разработчики — это создатели приложений, которые могут писать код для расширения возможностей создания и настройки бизнес-приложений.Разработчики могут использовать код для создания данных и метаданных, применять логику на стороне сервера с помощью функций, подключаемых модулей и расширений рабочего процесса Azure, применять логику на стороне клиента с помощью JavaScript, интегрироваться с внешними данными с помощью виртуальных сущностей и веб-перехватчиков, создавать настраиваемые соединители и встраивайте приложения в свой веб-сайт для создания интегрированных решений. Дополнительная информация:

Power Apps и Dynamics 365

Приложения

Dynamics 365, такие как Dynamics 365 Sales, Dynamics 365 Customer Service, Dynamics 365 Marketing, также используют базовую платформу данных (Dataverse), используемую Power Apps для хранения и защиты данных.Это позволяет создавать приложения с помощью Power Apps и Dataverse непосредственно на основе ваших основных бизнес-данных, уже используемых в Dynamics 365, без необходимости интеграции. Дополнительная информация: Dynamics 365 и Dataverse

Попробовать Power Apps бесплатно

Вы можете попробовать Power Apps бесплатно, подписавшись на 30-дневную пробную версию или план сообщества.

Приобрести Power Apps

Если вы решили приобрести Power Apps, см. Подробную информацию здесь: Покупка Power Apps.

Power Apps Правительство США планирует

Power Apps для правительства США состоит из нескольких планов для правительственных организаций США, направленных на удовлетворение уникальных и постоянно меняющихся требований государственного сектора США. Среда Power Apps GCC обеспечивает соответствие федеральным требованиям к облачным службам, включая FedRAMP High, DoD DISA IL2, и требованиям для систем уголовного правосудия (типы данных CJI). Дополнительные сведения: Power Apps для правительства США

состояний питания системы — приложения Win32

  • 10 минут на чтение

В этой статье

Для пользователя система либо включена, либо выключена.Других обнаруживаемых состояний нет. Однако система поддерживает несколько состояний питания, которые соответствуют состояниям питания, определенным в спецификации Advanced Configuration and Power Interface (ACPI). Также существуют варианты этих состояний, такие как гибридный сон и быстрый запуск. В этом разделе представлены эти состояния и описано, как они соотносятся друг с другом.

Примечание

Системные интеграторы и разработчики, создающие драйверы или приложения с системной службой, должны быть особенно осторожны с проблемами качества драйверов, такими как утечки памяти.Хотя качество драйверов всегда было важным, время безотказной работы между перезагрузками ядра может быть значительно дольше, чем в предыдущих версиях ОС, потому что при инициировании пользователем спящего режима и выключения ядро, драйверы и службы будут сохранены и восстановлены, а не перезапущены. .

В следующей таблице перечислены состояния мощности ACPI от самого высокого до самого низкого энергопотребления.

Состояние питания Состояние ACPI Описание
Рабочий
S0
Система полностью работоспособна.Неиспользуемые компоненты оборудования могут сэкономить электроэнергию, перейдя в режим пониженного энергопотребления.
Спящий режим
(современный режим ожидания)
S0 маломощный холостой ход
Некоторые системы SoC поддерживают состояние ожидания с низким энергопотреблением, известное как современный режим ожидания. В этом состоянии система может очень быстро переключиться из состояния с низким энергопотреблением в состояние с высоким энергопотреблением, чтобы она могла быстро реагировать на события оборудования и сети. Системы, поддерживающие современный режим ожидания, не используют S1-S3.
Спящий режим
S1
S2
S3
Система отключена.Потребляемая мощность в этих состояниях (S1-S3) меньше S0 и больше S4; S3 потребляет меньше энергии, чем S2, а S2 потребляет меньше энергии, чем S1. Системы обычно поддерживают одно из этих трех состояний, а не все три.
В этих состояниях (S1-S3) энергозависимая память постоянно обновляется для поддержания состояния системы. Некоторые компоненты остаются включенными, поэтому компьютер может выйти из спящего режима при вводе с клавиатуры, локальной сети или USB-устройства.
Гибридный спящий режим , используемый на настольных компьютерах, — это когда система использует файл гибернации с S1-S3.Файл гибернации сохраняет состояние системы на случай, если система потеряет питание во время сна.
[! Примечание] Системы SoC
, которые поддерживают современный режим ожидания (состояние ожидания с низким энергопотреблением), не используют S1-S3.
Спящий режим
S4
Система отключена. Энергопотребление снижено до самого низкого уровня. Система сохраняет содержимое энергозависимой памяти в файл гибернации для сохранения состояния системы. Некоторые компоненты остаются включенными, поэтому компьютер может выйти из спящего режима при вводе с клавиатуры, локальной сети или USB-устройства.Рабочий контекст можно восстановить, если он хранится на энергонезависимом носителе.
Быстрый запуск — это место, где пользователь выходит из системы до создания файла гибернации. Это позволяет использовать файл гибернации меньшего размера, более подходящий для систем с меньшими возможностями хранения.
Soft Off
S5
Система отключена. Это состояние состоит из полного выключения и цикла загрузки.
Механическое выключение
G3
Система полностью выключена и не потребляет энергию.Система возвращается в рабочее состояние только после полной перезагрузки.

Перечисление SYSTEM_POWER_STATE определяет значения, которые используются для определения состояний питания системы.

Рабочее состояние (S0)

В рабочем состоянии система активна и работает. Говоря простым языком, аппарат «включен». Независимо от того, включен экран или выключен, устройство находится в полностью рабочем состоянии. Для экономии энергии, особенно на устройствах с батарейным питанием, мы настоятельно рекомендуем отключать аппаратные компоненты, когда они не используются.

Важно

Отключение аппаратных компонентов, когда они не используются, независимо от состояния. Низкое энергопотребление — важный фактор для потребителей мобильных устройств.

Состояние сна (современный режим ожидания)

В рабочем состоянии S0 с низким энергопотреблением в режиме ожидания, также называемом современным режимом ожидания, система остается частично работающей. В режиме Modern Standby система может оставаться в актуальном состоянии всякий раз, когда доступна подходящая сеть, а также выходить из спящего режима, когда требуются действия в реальном времени, такие как обслуживание ОС.Modern Standby выходит из спящего режима значительно быстрее, чем S1-S3. Для получения дополнительной информации см. Современный режим ожидания.

Примечание

Modern Standby доступен только в некоторых системах SoC. Когда он поддерживается, система не поддерживает S1-S3.

Состояние сна (S1-S3)

Система переходит в спящий режим на основе ряда критериев, включая активность пользователя или приложения и предпочтения, которые пользователь устанавливает на странице Power & sleep приложения Settings . По умолчанию система использует состояние сна с самым низким энергопотреблением, поддерживаемое всеми включенными устройствами пробуждения.Дополнительные сведения о том, как система определяет, когда перейти в спящий режим, см. В разделе Критерии перехода в спящий режим.

Перед тем, как система переходит в спящий режим, она определяет соответствующее состояние сна, уведомляет приложения и драйверы об ожидающем переходе, а затем переводит систему в состояние сна. В случае критического перехода, например, при достижении критического порога заряда батареи, система не уведомляет приложения и драйверы. Приложения должны быть подготовлены к этому и предпринять соответствующие действия, когда система вернется в рабочее состояние.

В этих состояниях (S1-S3) энергозависимая память обновляется для поддержания состояния системы. Некоторые компоненты остаются включенными, поэтому компьютер может выйти из спящего режима при вводе с клавиатуры, локальной сети или USB-устройства.

Система также выходит из спящего режима в ответ на действия пользователя или событие пробуждения, определенное приложением. Дополнительные сведения см. В разделе «События пробуждения системы». Время, необходимое системе для пробуждения, зависит от состояния сна, из которого она пробуждается. Системе требуется больше времени, чтобы выйти из состояния пониженного энергопотребления (S3), чем из состояния повышенного энергопотребления (S1), из-за дополнительной работы, которую может выполнять аппаратное обеспечение (стабилизация источника питания, повторная инициализация процессора и т. Д. ).

Осторожно

При вызове SetThreadExecutionState значение ES_AWAYMODE_REQUIRED следует использовать только в случае крайней необходимости мультимедийными приложениями, которые требуют, чтобы система выполняла фоновые задачи, такие как запись телевизионного контента или потоковая передача мультимедиа на другие устройства, когда система находится в спящем режиме. Приложения, не требующие критической фоновой обработки или работающие на портативных компьютерах, не должны включать режим отсутствия, поскольку он не позволяет системе экономить электроэнергию за счет перехода в настоящий спящий режим.

Гибридный спящий режим (файл гибернации S1-S3 +)

Гибридный спящий режим — это особое состояние, которое представляет собой комбинацию состояний сна и гибернации, когда система использует файл гибернации с S1-S3. Это доступно только в некоторых системах. Если этот параметр включен, система записывает файл гибернации, но переходит в состояние сна с повышенной мощностью. Если питание отключено во время спящего режима, система выходит из спящего режима, что занимает больше времени, но восстанавливает состояние системы пользователя.

Состояние гибернации (S4)

Windows использует гибернацию для ускорения запуска.Когда доступно, он также используется на мобильных устройствах для продления срока службы батареи системы, предоставляя механизм для сохранения всего состояния пользователя перед выключением системы. При переходе в спящий режим все содержимое памяти записывается в файл на основном системном диске, файл гибернации . Это сохраняет состояние операционной системы, приложений и устройств. В случае, когда объединенный объем памяти занимает всю физическую память, файл гибернации должен быть достаточно большим, чтобы обеспечить место для сохранения всего содержимого физической памяти.Поскольку данные записываются в энергонезависимое хранилище, DRAM не нуждается в самообновлении и может отключаться, что означает, что энергопотребление в режиме гибернации очень низкое, почти такое же, как при отключении питания.

Во время полного выключения и загрузки (S5) вся пользовательская сессия прерывается и перезапускается при следующей загрузке. Напротив, во время гибернации (S4) сеанс пользователя закрывается, а состояние пользователя сохраняется.

Быстрый запуск (уменьшенный файл гибернации)

Быстрый запуск — это тип завершения работы, при котором используется файл гибернации для ускорения последующей загрузки.Во время выключения этого типа пользователь выходит из системы до создания файла гибернации. Быстрый запуск позволяет использовать файл гибернации меньшего размера, что больше подходит для систем с меньшими возможностями хранения. Для получения дополнительной информации см. Типы файлов гибернации.

При использовании быстрого запуска система кажется пользователю, как если бы произошла полная остановка (S5), даже если система фактически прошла через S4. Это включает в себя то, как система реагирует на сигналы пробуждения устройства.

Быстрый запуск завершает сеанс пользователя, но содержимое ядра (сеанс 0) записывается на жесткий диск.Это обеспечивает более быструю загрузку.

Чтобы программно инициировать быстрое завершение работы в стиле запуска, вызовите функцию InitiateShutdown с флагом SHUTDOWN_HYBRID или функцию ExitWindowsEx с флагом EWX_HYBRID_SHUTDOWN .

Примечание

Начиная с Windows 8, быстрый запуск является переходом по умолчанию при запросе выключения системы. Полное выключение (S5) происходит, когда запрашивается перезапуск системы (или приложение вызывает API выключения).

Переход в режим гибернации

Когда делается запрос гибернации, при переходе системы в спящий режим выполняются следующие действия:

  1. Уведомления о приложениях и сервисах
  2. Водители уведомлены
  3. Состояние пользователя и системы сохраняется на диск в сжатом формате
  4. Прошивка уведомлена

Примечание

Начиная с Windows 8, все ядра в системе используются для сжатия данных в памяти и записи их на диск.

Чтобы программно инициировать переход в спящий режим, вызовите функцию SetSuspendState .

Выход из режима гибернации

Когда система выходит из спящего режима.

Когда система включена, выполняются следующие шаги, когда система выходит из спящего режима.

  1. Система POST
  2. Системная память распаковывается и восстанавливается из файла гибернации
  3. Инициализация устройства
  4. Драйверы восстановлены до состояния, в котором они находились до перехода в спящий режим
  5. Службы восстановлены до состояния, в котором они были до перехода в спящий режим
  6. Система становится доступной для входа в систему

Выход из режима гибернации начинается с процедуры POST, которая аналогична завершению работы S5.Диспетчер загрузки ОС определяет, что требуется выход из режима гибернации, обнаружив допустимый файл гибернации. Затем он дает команду системе возобновить работу, восстанавливая содержимое памяти и все архитектурные регистры. В случае выхода из режима гибернации содержимое системной памяти считывается с диска, распаковывается и восстанавливается, переводя систему в то же состояние, в котором она находилась на момент перехода в режим гибернации. После восстановления памяти устройства перезапускаются, машина возвращается в рабочее состояние, готовое для входа в систему.

Примечание

При выходе из спящего режима драйверы и службы уведомляются, но не перезапускаются. Они восстанавливаются только в том состоянии, в котором были до перехода в спячку.

Типы файлов гибернации

Файлы гибернации используются для гибридного сна, быстрого запуска и стандартного спящего режима (описанного ранее). Существует два типа файлов гибернации, различающиеся по размеру: полный и уменьшенный файл гибернации. Только быстрый запуск может использовать сокращенный файл гибернации.

Тип файла гибернации Размер по умолчанию Поддерживает…
Полный 40% физической памяти спящий режим, гибридный спящий режим, быстрый запуск
Пониженный 20% физической памяти быстрый запуск

Чтобы проверить или изменить тип используемого файла гибернации, запустите утилиту powercfg.exe . Следующие примеры демонстрируют, как. Для получения дополнительной информации запустите powercfg /? спящий .

Пример Описание
powercfg / a
Проверьте тип файла гибернации. Когда используется файл полной гибернации, в результатах указывается, что режим гибернации является доступным вариантом. Когда используется сокращенный файл гибернации, в результатах будет указано, что гибернация не поддерживается. Если в системе вообще нет файла гибернации, в результатах будет указано, что режим гибернации не включен.
powercfg / h / type full
Измените тип файла гибернации на полный. Это не рекомендуется в системах с объемом памяти менее 32 ГБ.
powercfg / h / тип пониженный
Измените тип файла гибернации на уменьшенный. Если команда возвращает «параметр неверен», см. Следующий пример.
powercfg / h / размер 0
powercfg / h / type уменьшенный
Повторите попытку изменить тип файла гибернации на уменьшенный. Если для файла гибернации задан нестандартный размер более 40%, сначала необходимо установить размер файла равным нулю.Затем повторите сокращенную конфигурацию.

Состояние мягкого выключения (S5)

Состояние мягкого выключения — это полное выключение системы без файла гибернации. Мягкое выключение также известно как «полное выключение». Во время полного выключения и загрузки вся пользовательская сессия прерывается и перезапускается при следующей загрузке. Следовательно, загрузка / запуск из этого состояния занимает значительно больше времени, чем S1-S4. Полное выключение (S5) происходит, когда запрашивается перезапуск системы (или приложение вызывает API выключения).

Механическое выключенное состояние (G3)

В этом состоянии система полностью выключена и не потребляет энергию. Система возвращается в рабочее состояние только после полной перезагрузки.

Поведение при пробуждении по локальной сети

Функция пробуждения по локальной сети (WOL) выводит компьютер из состояния низкого энергопотребления, когда сетевой адаптер обнаруживает событие WOL (обычно это специально созданный пакет Ethernet).

WOL поддерживается в спящем режиме (S3) или гибернации (S4). Он не поддерживается в состояниях быстрого запуска или мягкого выключения (S5).Сетевые адаптеры не активированы для пробуждения в этих состояниях, потому что пользователи не ожидают, что их системы пробуждаются сами по себе.

Примечание

WOL официально не поддерживается от soft off (S5). Однако BIOS в некоторых системах может поддерживать постановку сетевых адаптеров на охрану для пробуждения, даже если Windows не участвует в этом процессе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *