формула, как определить — Asutpp
Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.
Определение
Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.
Соотношение энергийЭлектротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:
Прибор | Мощность бытовых приборов, Вт/час |
Зарядное устройство | 2 |
Люминесцентная лампа ДРЛ | От 50 |
Акустическая система | 30 |
Электрический чайник | 1500 |
Стиральной машины | 2500 |
Полуавтоматический инвертор | 3500 |
Мойка высокого давления | 3500 |
Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.
Обозначение реактивной составляющей:
Это номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.
Расчет
Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:
S = U \ I, где U – это напряжение сети, а I – это сила тока сети.
Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:
Схема симметричной нагрузкиРасчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:
S = U * I * cos φ.
Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ. Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная. Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).
Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.
Расчет трехфазной сетиМаксимальная и активная обозначается P, реактивная мощность – Q.
Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:
QL = ULI = I2xL
Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.
Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:
S = √P2 + Q2, и все это равняется U*I .
Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:
Сопротивление индуктивности: xL = ωL = 2πfL,
Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).
Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.
При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности. Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы. С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:
К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:
cos φ = r/z = P/S
Для получения максимально точных результатов рекомендуется не округлять полученные данные.
Компенсация
Учитывая, что при резонансе токов реактивная мощность равняется 0:
Q = QL — QC = ULI – UCI
Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.
При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества.
- Значительно уменьшается нагрузка силовых трансформаторов;
- Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
- У сигнальных и радиоустройств уменьшаются помехи;
- На порядок уменьшаются гармоники в электрической сети.
В некоторых случаях специалисты используют не полноценные ИБП, а специальные компенсирующие конденсаторы. Они подходят для бытового использования, доступны и продаются в каждом электротехническом магазине. Для расчета планируемой и полученной экономии можно использовать все вышеперечисленные формулы.
как найти, формула расчёта, в чем измеряется
Содержание:
Мощность в цепи переменного электрического тока
Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.
Мощность — физическая величина, отражающая скорость преобразования или передачи электрической энергии.
В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.
Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.
Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д.), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.
При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.
Понятие активной мощности
Активная «полезная» мощность — это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в ваттах (Вт).
Рассчитывается по формуле: P = U⋅I⋅cosφ,
где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.
ВАЖНО! Описанная ранее формула подходит для расчета цепей с напряжением 220В, однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73
Что это означает
В сетях переменного тока, которыми на сегодняшний день пользуется абсолютно весь мир, без активной и реактивной мощностей никак не обойтись – они взаимозависимы и даже необходимы. К активной электроэнергии относится напряжение, которое вырабатывается на ТЭС, ГрЭС, АЭС, мобильном генераторе, стоящем в гараже и т.д. – оно поступает к потребителю (на фабрики, заводы, к нам домой) и питает все электроприборы от сети ≈220-380 V. В это же время функция реактивной составляющей полного тока заключается в бесцельном блуждании от источника к потребителю и обратно. Так откуда же берётся эта, бесполезная на первый взгляд, субстанция?
Все дело в том, что в наших домах, на предприятиях и любых других электрифицированных объектах есть приборы с индуктивными катушками (для примера можно взять статор двигателя), где постоянно возникают магнитные поля. То есть, часть из них вращает ротор (якорь), а часть возвращается обратно и так до бесконечности, пока существует движение активной энергии. Это хорошо демонстрирует кружка свежего пива: с жидкостью человек выпивает лишь малую часть пены, а остальную оставляет в бокале либо сдувает на землю. Но эта самая пена является продуктом брожения (индукции), без которого пива, как такового, не будет вообще.
Сейчас уже можно подвести первый итог в понимании темы: если есть индуктивная нагрузка (а она есть всегда), то обязательно появится реактивный ток, потребляемый индукцией, которая сама его создает. То есть, индукция вырабатывает реактивную мощность, потом её потребляет, вырабатывает заново и так постоянно, но в этом кроется одна проблема. Для движения реактивной субстанции туда обратно, нужна активная энергия, которая расходуется из-за постоянного движения электронов по проводам (нагрев проводов).
Можно прийти к выводу, что активная мощность генератора, это полное противопоставление реактивной, на первый взгляд бесполезной мощности? Но это не так. Вспомните, сестры неразлучны между собой, так как любят друг друга, а пиво без пены никто не станет пить, да и забродить без неё напиток будет не в состоянии. То же можно сказать о реактивной мощности – без неё невозможно создание магнитных полей, так что с этой силой придется считаться. Но тут в дело пошли мозговые извилины изобретателей, которые решили сократить территориальное пространство (не гонять по проводам взад-вперед) этой, не совсем понятной, субстанции и вырабатывать её в непосредственной близости от объекта потребления.
Для наглядного примера можно взять всем известный электрический фен, в котором есть двигатель, вращающий вал с лопастями – он называется турбиной для подачи горячего воздуха. Так вот, чтобы разгрузить линию электропередач от бесполезной беготни реактива от станции к потребителю и обратно, в корпус прибора встраивают конденсатор нужной емкости. А представьте себе ту же электросварку или токарный цех с десятками мощных станков, – какой потенциал высвобождается реактивным током для увеличения КПД. Если говорить техническим языком, то установка конденсаторов или других статических компенсирующих элементов называется компенсацией реактивной мощности. Получается, что активная и реактивная мощность, это две неразрывно связанных между собой величины.
Вырабатывать реактивную мощность могут также и генераторы на электростанциях любого типа. Для этого достаточно сменить ток возбуждения (перевозбуждения, недовозбуждения) и генератор окажется как поставщиком, так и потребителем этой величины. Но, это всего лишь законы физики, которые в данном случае не очень выгодны для людей, поэтому лучше всего переносить емкость накопления и отдачи, как можно ближе к источнику – в корпус прибора (агрегата) или в производственный цех.
Простое объяснение с формулами
Активная мощность (P)
Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть
P = U I
потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.
Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:
P = U I Cosθ
В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.
Формулы для активной мощности
P = U I – в цепях постоянного тока
P = U I cosθ – в однофазных цепях переменного тока
P = √3 UL IL cosθ – в трёхфазных цепях переменного тока
P = 3 UPh IPh cosθ
P = √ (S2 – Q2) или
P =√ (ВА2 – вар2) или
Активная мощность = √ (Полная мощность2 – Реактивная мощность2) или
кВт = √ (кВА2 – квар2)
Реактивная мощность (Q)
Также её мощно было бы назвать бесполезной или безваттной мощностью.
Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).
Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.
Реактивная мощность определяется, как
Q = U I sinθ
и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.
Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.
В чем измеряется активная мощность?
Активная мощность: обозначение P, единица измерения: Ватт Реактивная мощность: обозначение Q, единица измерения: ВАр (Вольт Ампер реактивный) Полная мощность: обозначение S, единица измерения: ВА (Вольт Ампер)
В чем разница между активной и реактивной мощности?
Как узнать какая мощность в цепи переменного тока
Стоит указать, что это величина, которая прямо связывается с иными показателями. К примеру, она находится в прямой зависимости от времени, силы, скорости, вектора силы и скорости, модуля силы и скорости, момента силы и частоты вращения. Часто в формулах во время вычисления электромощности используется также число Пи с показателем сопротивления, мгновенным током, напряжением на конкретном участке электрической сети, активной, полной и реактивной силой. Непосредственно участник вычисления это амплитуда, угловая скорость и начальная сила тока с напряжением.
Формула мощности в цепи переменного тока
В однофазной цепи
Понять, какой мощностный показатель есть в однофазной цепи переменного тока, можно при помощи применения трансформатора тока. Для этого необходимо воспользоваться ваттметром, который включен через токовый трансформатор. Показания следует перемножить на трансформаторный коэффициент тока. В момент измерения мощности в высоком напряжении трансформатор тока необходим, чтобы заизолировать ваттметр и обеспечить безопасность пользователя. Параллельна цепь включается не непосредственным способом, а благодаря трансформатору напряжения. Вторичные обмотки с корпусами измерительных трансформаторных установок необходимо заземлять во избежание случайного изоляционного повреждения и попадания высокого напряжения на приборы.
Обратите внимание! Для определения параметров в сети необходимо амперметр перемножить на трансформаторный коэффициент тока, а цифры, полученные вольтметром, перемножить на трансформаторный коэффициент напряжения.
В однофазной цепи
Чему равна активная мощность трехфазной цепи?
Активной мощностью трехфазной системы называется сумма активных мощностей всех фаз приемника. где — φ угол сдвига фаз между фазными напряжением и током.
Как рассчитать активную мощность трансформатора?
Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула: S = U I, где U – это напряжение сети, а I – это сила тока сети. Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда: S = U * I * cos φ.
Электроприборы, влияющие на качество потребления
Коэффициент мощности равен единице при подключении ламп и нагревателей. Он уменьшается до 0,7 и менее, когда в цепи добавляют преобладающие по потреблению энергии электромоторы, другие компоненты с реактивными составляющими.
Правильное применение определений и расчетов мощности помогает оптимизировать проект электрической сети с учетом особенностей подключаемых нагрузок. Приведенные выше сведения пригодятся на стадии определения параметров проводки, защитных автоматов. Комплексное использование этих знаний повысит надежность электроснабжения, предотвратит возникновение и развитие аварийных ситуаций.
Чем отличается активная мощность от реактивной – Все об электричестве
Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.
Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны.
Единица измерений активной мощности Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР).
Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.
Соотношение энергий
Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:
Прибор | Мощность бытовых приборов, Вт/час |
Зарядное устройство | 2 |
Люминесцентная лампа ДРЛ | От 50 |
Акустическая система | 30 |
Электрический чайник | 1500 |
Стиральной машины | 2500 |
Полуавтоматический инвертор | 3500 |
Мойка высокого давления | 3500 |
Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.
Генерация активной составляющей
Обозначение реактивной составляющей:
Это номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.
Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:
S = U I, где U – это напряжение сети, а I – это сила тока сети.
Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:
Схема симметричной нагрузки
Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:
S = U * I * cos φ.
Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ.
Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная.
Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).
Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.
Расчет трехфазной сети
Максимальная и активная обозначается P, реактивная мощность – Q.
Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:
QL = ULI = I2xL
Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.
Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:
S = √P2 + Q2, и все это равняется U*I .
Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:
Сопротивление индуктивности: xL = ωL = 2πfL,
Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).
Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.
При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности.
Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы.
С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:
Диаграмма треугольников напряжений
К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:
cos φ = r/z = P/S
Для получения максимально точных результатов рекомендуется не округлять полученные данные.
Учитывая, что при резонансе токов реактивная мощность равняется 0:
Q = QL – QC = ULI – UCI
Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.
При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества. Специалисты доказали, что в среднем, ИБП поможет экономить от 20 % до 50 %. Почему это происходит:
- Значительно уменьшается нагрузка силовых трансформаторов;
- Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
- У сигнальных и радиоустройств уменьшаются помехи;
- На порядок уменьшаются гармоники в электрической сети.
Активная электроэнергия
Активная составляющая полной мощности совершает полезную работу и преобразовывается в те виды энергии, которые нужны потребителю. У части бытовых и промышленных электроприборов в расчетах активная и полная мощность совпадают. Среди таких устройств – электроплиты, лампы накаливания, электропечи, обогреватели, утюги и гладильные прессы и прочее.
Если в паспорте указана активная мощность 1 кВт, то полная мощность такого прибора будет составлять 1 кВА.
Предыдущая
РазноеЭнергия конденсатора
Следующая
РазноеАвтоматические выключатели
Что такое активная, реактивная и полная мощность – определение и объяснение
Активная мощность
Определение: Мощность, которая фактически потребляется или используется в цепи переменного тока, называется Фактическая мощность или Активная мощность или Активная мощность . Измеряется в киловаттах (кВт) или МВт. Это фактические результаты электрической системы, которая управляет электрическими цепями или нагрузкой.
Реактивная мощность
Определение: Мощность, которая течет туда и обратно, что означает, что она движется в обоих направлениях в цепи или реагирует сама на себя, называется Реактивной мощностью . Реактивная мощность измеряется в реактивных киловольт-амперах (кВАр) или МВАР.
Полная мощность
Определение: Произведение среднеквадратичного (RMS) значения напряжения и тока известно как Полная мощность . Эта мощность измеряется в кВА или МВА.
Было замечено, что мощность расходуется только на сопротивление. Чистая катушка индуктивности и чистый конденсатор не потребляют никакой мощности, поскольку за полупериод, какая бы мощность ни была получена от источника этими компонентами, такая же мощность возвращается к источнику. Эта мощность, которая возвращается и течет в обоих направлениях в цепи, называется реактивной мощностью.
В чисто резистивной цепи ток совпадает по фазе с приложенным напряжением, тогда как в чисто индуктивной и емкостной цепи ток сдвинут по фазе на 90 градусов, т. е. если в цепь подключена индуктивная нагрузка, ток отстает от напряжения на 90 градусов, а при подключении емкостной нагрузки ток опережает напряжение на 90 градусов.
Следовательно, из всего вышеизложенного можно сделать вывод, что ток в фазе с напряжением производит истинную или активную мощность
Следовательно,
- Истинная мощность = напряжение x ток в фазе с напряжением
- Реактивная мощность = напряжение x ток не совпадают по фазе с напряжением
Векторная диаграмма для индуктивной цепи показана ниже:
Если взять за основу напряжение V, то ток I отстает от напряжения V на угол ϕ. Ток I делится на две составляющие:
- I Cos ϕ в фазе с напряжением В
- I Sin ϕ, который на 90 градусов не совпадает по фазе с напряжением В
Таким образом, приведенное ниже выражение дает активную, реактивную и полную мощность соответственно.
- Активная мощность P = V x I cosϕ = V I cosϕ
- Реактивная мощность P r или Q = V x I sinϕ = V I sinϕ
- Полная мощность P a или S = V x I = VI
Активный компонент тока
Составляющая тока, которая находится в фазе с напряжением цепи и вносит вклад в активную или действительную мощность цепи, называется активной составляющей или полной ваттной составляющей или синфазной составляющей тока.
Реактивная составляющая тока
Составляющая тока, которая находится в квадратуре или на 90 градусов не совпадает по фазе с напряжением цепи и вносит свой вклад в реактивную мощность цепи, называется реактивной составляющей текущего.
Мощность в цепи переменного тока Активная мощность Реактивная мощность Полная мощность
В электрических и электронных схемах мощность является одной из наиболее важных величин, используемых для анализа цепей для практических приложений. электрическая мощность определяется как скорость расширения или поглощения энергии в цепи во времени, т. е.
$$\mathrm{Power,P=\frac{Energy \;expanded\; или\; поглощается (𝑊)}{Время(𝑡)}}…..(1)$$
Эта статья предназначена для объяснения соотношений мощности в цепях переменного тока . Где цепь переменного тока — это цепь, которая возбуждается от источника переменного напряжения.
Мгновенная мощность в цепи переменного тока
Значение электрической мощности в цепи переменного тока, измеренное в определенный момент времени, называется
мгновенная мощность . Обычно обозначается строчной буквой $p$. В целом,
мгновенная мощность в цепи переменного тока получается путем умножения мгновенного напряжения на
мгновенный ток, т.
$$\mathrm{Мгновенная \;мощность, 𝑝 = \upsilon. i\;\;}….(2)$$
Рассмотрим любую цепь переменного тока, если мгновенные значения напряжения и тока в цепи определяются выражением
$$\mathrm{\upsilon=V_{m}\ sin\left({wt}\right)}….(3)$$
$$\mathrm{i=I_{m}\sin\left({wt-\phi}\right)}.. ..(4)$$
Где $\mathrm{\phi}$ — фазовый угол между напряжением и током в любой момент времени. Где $\mathrm{\phi}$ имеет отрицательное значение, когда ток отстает от напряжения, положительное значение, когда ток опережает напряжение, и ноль, когда ток и напряжение находятся в одной фазе.
Следовательно, по определению мгновенная мощность определяется выражением
$$\mathrm{p=vi=V_{m}\sin(wt).I_{m}\sin(wt-\phi)}$ $
$$\mathrm{\Rightarrow\; p=\frac{1}{2}\times2\times\; V_{m}I_{m}\sin wt \sin (wt-\phi)}$$
$$\mathrm{\Rightarrow\; p=\frac{V_{m}I_{m}}{2}[\cos\phi-\cos(2wt-\phi)]}$$
$$\mathrm{\следовательно\; p=\frac{V_{m}I_{m}}{2}\cos\phi-\frac{V_{m}I_{m}}{2}\cos(2wt-\phi)}. … ..(5)$$
Здесь второе слагаемое в правой части уравнения (5) содержит двойное частотное слагаемое, а модуль среднего значения этого слагаемого равен нулю, поскольку среднее значение синусоидальной величины по полному цикл нулевой. Таким образом, мгновенная мощность состоит только из первого члена уравнения (5), т. е.
$$\mathrm{P=\frac{1}{2}\;V_{m}I_{m}\cos\phi……(6)}$$
Этот термин равен средняя мощность в цепи переменного тока. Кроме того, средняя мощность в цепи переменного тока может быть выражена через среднеквадратичные значения напряжения и тока как
$$\mathrm{P=\frac{V_{m}}{\sqrt{2}}\frac{I_ {m}}{\sqrt{2}}\cos\phi}$$
$$\mathrm{\следовательно \;P=VI\cos\phi…..(7)}$$
Где , $\mathrm{\cos\phi}$ известен как коэффициент мощности схемы.
В электрической цепи переменного тока различают следующие три вида электроэнергии −
- Активная мощность
- Реактивная мощность
- Полная мощность
Активная мощность
Активная мощность – это количество полной электроэнергии в электрической цепи переменного тока, которая фактически потребляется или используется. Его также называют реальной мощностью или реальной мощностью . Активная мощность измеряется в ваттах (Вт). Более крупными единицами активной мощности являются киловатт (кВт), мегаватт (МВт), гигаватт (ГВт) и так далее.
Технически, когда в электрической цепи переменного тока угол сдвига фаз становится равным нулю, т.е. коэффициент мощности становится равным единице, то мощность, потребляемая в цепи, называется 9{\circ}}$$
$$\mathrm{\следовательно, Active\;Power,P=VI}$$
На практике активная мощность используется для определения номинальных характеристик электрических нагрузок, таких как двигатели, лампочки, утюги, и т.д.
Реактивная мощность
Реактивная мощность — это количество общей электрической мощности, которая остается неиспользованной в электрической цепи переменного тока и течет туда и обратно в электрической системе от нагрузки к источнику и наоборот . Обозначается буквой Q и измеряется в Вольт-ампер реактивный (ВАР) .
Реактивная мощность в цепи переменного тока также может быть определена как произведение среднеквадратичных значений напряжения и тока на синус фазового угла, т. е.
$$\mathrm{Q=VI\sin\phi}$$
Реактивная мощность также известна как ваттная мощность или квадратурная мощность . Для индуктивной нагрузки потребляемая реактивная мощность равна отстающей реактивной мощности , а потребляемая конденсатором — опережающей реактивной мощности . Следовательно, есть два элемента цепи переменного тока, а именно индуктор и конденсатор, которые отвечают за поток реактивной мощности в цепи.
Реактивная мощность отвечает за работу всех электромагнитных машин, таких как двигатели, генераторы и т. д., поскольку она создает в этих машинах необходимое магнитное возбуждение.
Полная мощность
Полная мощность, производимая источником переменного тока, равна полной мощности . Он измеряется как произведение среднеквадратичных значений напряжения и тока.